Skip to main content
Log in

Substituent-dependent backward reaction in mechanofluorochromism of dibenzoylmethanatoboron difluoride derivatives

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The thermally backward reaction involved in the mechanofluorochromism of dibenzoylmethanatoboron difluoride (BF2DBM) derivatives, accompanied by an amorphous–crystalline phase transition, was quantitatively evaluated based on kinetics and thermodynamics. The kinetics was discussed by evaluation of the effect of temperature on the time-dependent changes of the fluorescence intensity for amorphous samples obtained by mechanical grinding. The thermodynamics was discussed based on data for the amorphous–crystalline phase transition obtained by differential scanning calorimetry. The enthalpy of activation (ΔH) of BF2DBM derivatives with MeO groups (2aBF2) was larger than that of derivatives with alkyl groups (2b-dBF2), whereas the entropy of activation (ΔS) was smaller than that of the derivatives with alkyl groups. It is proposed that the reaction dynamics of 2aBF2 will be governed by rotational motion around the C(methyl)–O bond. Interestingly, the Gibbs energies of activation (ΔG) were comparable for the reactions of all members of the BF2DBM series, though ΔH and ΔS were strongly dependent on the identity of the substituent. It is proposed that the substituent-dependent ΔS term is one of the key parameters for understanding the mechanofluorochromism of BF2DBM derivatives associated with the amorphous–crystalline phase transition. These findings will also provide important insights into the process of formation of crystal nuclei in moving from the melted to the crystalline state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Z. G. Chi, X. Q. Zhang, B. J. Xu, X. Zhou, C. P. Ma, Y. Zhang, S. W. Liu, J. R. Xu, Chem. Soc. Rev., 2012, 41, 3878–3896.

    Article  CAS  Google Scholar 

  2. Y. Sagara, T. Kato, Nat. Chem., 2009, 1, 605–610.

    Article  CAS  Google Scholar 

  3. Y. Sagara, S. Yamane, T. Mutai, K. Araki, T. Kato, Adv. Funct. Mater., 2009, 19, 1869–1875.

    Article  CAS  Google Scholar 

  4. Y. Sagara, T. Kato, Angew. Chem., Int. Ed., 2008, 47, 5175–5178.

    Article  CAS  Google Scholar 

  5. Y. Ooyama, G. Ito, H. Fukuoka, T. Nagano, Y. Kagawa, I. Imae, K. Komaguchi, Y. Harima, Tetrahedron, 2010, 66, 7268–7271.

    Article  CAS  Google Scholar 

  6. J. Ni, X. Zhang, N. Qiu, Y. H. Wu, L. Y. Zhang, J. Zhang, Z. N. Chen, Inorg. Chem., 2011, 50, 9090–9096.

    Article  CAS  Google Scholar 

  7. Y. Sagara, T. Mutai, I. Yoshikawa, K. Araki, J. Am. Chem. Soc., 2007, 129, 1520–1521.

    Article  CAS  Google Scholar 

  8. Y. A. Lee, R. Eisenberg, J. Am. Chem. Soc., 2003, 125, 7778–7779.

    Article  CAS  Google Scholar 

  9. H. Ito, T. Saito, N. Oshima, N. Kitamura, S. Ishizaka, Y. Hinatsu, M. Wakeshima, M. Kato, K. Tsuge, M. Sawamura, J. Am. Chem. Soc., 2008, 130, 10044–10045.

    Article  CAS  Google Scholar 

  10. G. Q. Zhang, J. W. Lu, M. Sabat, C. L. Fraser, J. Am. Chem. Soc., 2010, 132, 2160–2162.

    Article  CAS  Google Scholar 

  11. W. A. Morris, T. D. Liu, C. L. Fraser, J. Mater. Chem. C, 2015, 3, 352–363.

    Article  CAS  Google Scholar 

  12. T. Liu, A. D. Chien, J. Lu, G. Zhang, C. L. Fraser, J. Mater. Chem., 2011, 21, 8401–8408.

    Article  CAS  Google Scholar 

  13. G. Q. Zhang, J. P. Singer, S. E. Kooi, R. E. Evans, E. L. Thomas, C. L. Fraser, J. Mater. Chem., 2011, 21, 8295–8299.

    Article  CAS  Google Scholar 

  14. X. X. Sun, X. P. Zhang, X. Y. Li, S. Y. Liu, G. Q. Zhang, J. Mater. Chem., 2012, 22, 17332–17339.

    Article  CAS  Google Scholar 

  15. N. D. Nguyen, G. Q. Zhang, J. W. Lu, A. E. Sherman, C. L. Fraser, J. Mater. Chem., 2011, 21, 8409–8415.

    Article  CAS  Google Scholar 

  16. S. P. Xu, R. E. Evans, T. D. Liu, G. Q. Zhang, J. N. Demas, C. O. Trindle, C. L. Fraser, Inorg. Chem., 2013, 52, 3597–3610.

    Article  CAS  Google Scholar 

  17. A. G. Mirochnik, E. V. Fedorenko, T. A. Kaidalova, E. B. Merkulov, V. G. Kulyavyi, K. N. Galkin, V. E. Karasev, J. Lumin., 2008, 128, 1799–1802.

    Article  CAS  Google Scholar 

  18. M. Halik, W. Wenseleers, C. Grasso, F. Stellacci, E. Zojer, S. Barlow, J. L. Bredas, J. W. Perry, S. R. Marder, Chem. Commun., 2003, 1490–1491.

    Google Scholar 

  19. E. Cogne-Laage, J. F. Allemand, O. Ruel, J. B. Baudin, V. Croquette, M. Blanchard-Desce, L. Jullien, Chem.–Eur. J., 2004, 10, 1445–1455.

    Article  CAS  Google Scholar 

  20. K. Ono, K. Yoshikawa, Y. Tsuji, H. Yamaguchi, R. Uozumi, M. Tomura, K. Taga, K. Saito, Tetrahedron, 2007, 63, 9354–9358.

    Article  CAS  Google Scholar 

  21. G. Zhang, J. Chen, S. J. Payne, S. E. Kooi, J. N. Demas, C. L. Fraser, J. Am. Chem. Soc., 2007, 129, 8942–8943.

    Article  CAS  Google Scholar 

  22. J. Samonina-Kosicka, C. A. DeRosa, W. A. Morris, Z. Y. Fan, C. L. Fraser, Macromolecules, 2014, 47, 3736–3746.

    Article  CAS  Google Scholar 

  23. A. Sakai, E. Ohta, Y. Yoshimoto, M. Tanaka, Y. Matsui, K. Mizuno, H. Ikeda, Chem.–Eur. J., 2015, 21, 18128–18137.

    Article  CAS  Google Scholar 

  24. K. Mutoh, J. Abe, Phys. Chem. Chem. Phys., 2014, 16, 17537–17540.

    Article  CAS  Google Scholar 

  25. K. Shima, K. Mutoh, Y. Kobayashi, J. Abe, J. Phys. Chem. A, 2015, 119, 1087–1093.

    Article  CAS  Google Scholar 

  26. F. Ito, T. Sagawa, RSC Adv., 2013, 3, 19785–19788.

    Article  CAS  Google Scholar 

  27. A. Sakai, M. Tanaka, E. Ohta, Y. Yoshimoto, K. Mizuno, H. Ikeda, Tetrahedron Lett., 2012, 53, 4138–4141.

    Article  CAS  Google Scholar 

  28. M. Tanaka, E. Ohta, A. Sakai, Y. Yoshimoto, K. Mizuno, H. Ikeda, Tetrahedron Lett., 2013, 54, 4380–4384.

    Article  CAS  Google Scholar 

  29. T. Steiner, Angew. Chem., Int. Ed., 2002, 41, 48–76.

    Article  CAS  Google Scholar 

  30. X. Zhang, C.-J. Yan, G.-B. Pan, R.-Q. Zhang, L.-J. Wan, J. Phys. Chem. C, 2007, 111, 13851–13854.

    Article  CAS  Google Scholar 

  31. P. Galer, R. C. Korosec, M. Vidmar, B. Šket, J. Am. Chem. Soc., 2014, 136, 7383–7394.

    Article  CAS  Google Scholar 

  32. R. Davis, N. S. S. Kumar, S. Abraham, C. H. Suresh, N. P. Rath, N. Tamaoki, S. Das, J. Phys. Chem. C, 2008, 112, 2137–2146.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuyuki Ito.

Additional information

Electronic supplementary information (ESI) available: The rate constants of the thermally backward reaction of BF2DBM derivatives. See DOI: 10.1039/c5pp00453e

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sagawa, T., Ito, F., Sakai, A. et al. Substituent-dependent backward reaction in mechanofluorochromism of dibenzoylmethanatoboron difluoride derivatives. Photochem Photobiol Sci 15, 420–430 (2016). https://doi.org/10.1039/c5pp00453e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c5pp00453e

Navigation