Skip to main content
Log in

The role of the non-covalent β-ionone-ring binding site in rhodopsin: historical and physiological perspective

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Bleached rhodopsin regenerates by way of the Schiff base formation between the 11-cis retinal and opsin. Recovery of human vision from light adapted states follows biphasic kinetics and each adaptive phase is assigned to two distinct classes of visual pigments in cones and rods, respectively, suggesting that the speed of Schiff base formation differs between iodopsin and rhodopsin. Matsumoto and Yoshizawa predicted the existence of a β-ionone ring-binding site in rhodopsin, which has been proven by structural studies. They postulated that rhodopsin regeneration starts with a non-covalent binding of the β-ionone ring moiety of 11-cis-retinal, followed by the Schiff base formation. Recent physiological investigation revealed that non-covalent occupation of the β-ionone ring binding site transiently activates the visual transduction cascade in the dark. In order to understand the role of non-covalent binding of 11-cis-retinal to opsin during regeneration, we studied the kinetics of rhodopsin regeneration from opsin and 11-cis-retinal and found that the Schiff base formation is accelerated ~107 times compared to that between retinal and free amine. According to Cordes and Jencks, Schiff base formation in solution exhibits a bell-shaped pH dependence. However, we discovered that the rhodopsin formation is independent of pH over a wide pH range, suggesting that aqueous solvents do not have access to the Schiff base milieu during its formation. According to Hecht et al. the regeneration of iodopsin must be significantly faster than that of rhodopsin. Does this suggest that the Schiff base formation in iodopsin is favored due to its structural architecture? The iodopsin structure once solved would answer such a question as how molecular fine-tuning of retinal proteins realizes their dark adaptive functions. In contrast, bacteriorhodopsin does not require occupancy of a distinct β-ionone ring-binding site, enabling an aldehyde without the cyclohexene ring to form a pigment. Studies of regeneration reaction of other retinal proteins, which are scarcely available, would clarify the molecular structure–phenotype relationships and their physiological roles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Matsumoto, T. Yoshizawa, Existence of a beta-ionone ring-binding site in the rhodopsin molecule, Nature, 1975, 258, 523–526.

    Article  CAS  PubMed  Google Scholar 

  2. E. H. Cordes, W. P. Jencks, On the Mechanism of Schiff Base Formation and Hydrolysis, J. Am. Chem. Soc., 1962, 84, 832–837.

    Article  CAS  Google Scholar 

  3. S. Hecht, C. Haig, G. Wald, The Dark Adaptation of Retinal Fields of Different Size and Location, J. Gen. Physiol., 1935, 19, 321–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. J. Nathans, D. Thomas, D. S. Hogness, Molecular genetics of human color vision: the genes encoding blue, green, and red pigments, Science, 1986, 232, 193–202.

    Article  CAS  PubMed  Google Scholar 

  5. T. Okano, D. Kojima, Y. Fukada, Y. Shichida, T. Yoshizawa, Primary structures of chicken cone visual pigments: vertebrate rhodopsins have evolved out of cone visual pigments, Proc. Natl. Acad. Sci. U. S. A., 1992, 89, 5932–5936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. D. Bownds, Site of attachment of retinal in rhodopsin, Nature, 1967, 216, 1178–1181.

    Article  CAS  PubMed  Google Scholar 

  7. R. Hubbard, G. Wald, Cis-trans isomers of vitamin A and retinene in the rhodopsin system, J. Gen. Physiol., 1952, 36, 269–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. K. Palczewski, T. Kumasaka, T. Hori, C. A. Behnke, H. Motoshima, B. A. Fox, I. Le Trong, D. C. Teller, T. Okada, R. E. Stenkamp, et al. Crystal structure of rhodopsin: A G protein-coupled receptor, Science, 2000, 289, 739–745.

    Article  CAS  PubMed  Google Scholar 

  9. J. Li, P. C. Edwards, M. Burghammer, C. Villa, G. F. Schertler, Structure of bovine rhodopsin in a trigonal crystal form, J. Mol. Biol., 2004, 343, 1409–1438.

    Article  CAS  PubMed  Google Scholar 

  10. V. J. Kefalov, M. Carter Cornwall, R. K. Crouch, Occupancy of the chromophore binding site of opsin activates visual transduction in rod photoreceptors, J. Gen. Physiol., 1999, 113, 491–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. V. J. Kefalov, R. K. Crouch, M. C. Cornwall, Role of noncovalent binding of 11-cis-retinal to opsin in dark adaptation of rod and cone photoreceptors, Neuron, 2001, 29, 749–755.

    Article  CAS  PubMed  Google Scholar 

  12. M. Audet, M. Bouvier, Restructuring G-protein- coupled receptor activation, Cell, 2012, 151, 14–23.

    Article  CAS  PubMed  Google Scholar 

  13. H. Matsumoto, T. Yoshizawa, Recognition of opsin to the longitudinal length of retinal isomers in the formation of rhodopsin, Vision. Res., 1978, 18, 607–609.

    Article  CAS  PubMed  Google Scholar 

  14. W. J. DeGrip, R. S. Liu, V. Ramamurthy, A. Asato, Rhodopsin analogues from highly hindered 7-cis isomers of retinal, Nature, 1976, 262, 416–418.

    Article  CAS  PubMed  Google Scholar 

  15. H. Matsumoto, R. S. H. Liu, C. J. Simmons, K. Seff, Longitudinal Restrictions of the Binding Site of Opsin As Measured with Retinal Isomers and Analogues, J. Am. Chem. Soc., 1980, 102, 4259–4262.

    Article  CAS  Google Scholar 

  16. T. Okada, M. Sugihara, A. N. Bondar, M. Elstner, P. Entel, V. Buss, The retinal conformation and its environment in rhodopsin in light of a new 2.2 A crystal structure, J. Mol. Biol., 2004, 342, 571–583.

    Article  CAS  PubMed  Google Scholar 

  17. H. Nakamichi, V. Buss, T. Okada, Photoisomerization mechanism of rhodopsin and 9-cis-rhodopsin revealed by x-ray crystallography, Biophys. J., 2007, 92, L106–L108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. H. Nakamichi, T. Okada, Crystallographic analysis of primary visual photochemistry, Angew. Chem., Int. Ed., 2006, 45, 4270–4273.

    Article  CAS  Google Scholar 

  19. H. W. Choe, Y. J. Kim, J. H. Park, T. Morizumi, E. F. Pai, N. Krauss, K. P. Hofmann, P. Scheerer, O. P. Ernst, Crystal structure of metarhodopsin II, Nature, 2011, 471, 651–655.

    Article  CAS  PubMed  Google Scholar 

  20. H. Matsumoto, K. Horiuchi, T. Yoshizawa, Effect of digitonin concentration on regeneration of cattle rhodopsin, Biochim. Biophys. Acta, 1978, 501, 257–268.

    Article  CAS  PubMed  Google Scholar 

  21. H. Matsumoto, T. Yoshizawa, Rhodopsin regeneration is accelerated via noncovalent 11-cis retinal-opsin complex–a role of retinal binding pocket of opsin, Photochem. Photobiol., 2008, 84, 985–989.

    Article  CAS  PubMed  Google Scholar 

  22. H. Matsumoto, Kinetic studies of rhodopsin regeneration (in Japanese), Kyoto University, 1977.

    Google Scholar 

  23. A. Cooper, S. F. Dixon, M. A. Nutley, J. L. Robb, Mechanism of retinal Schiff base formation and hydrolysis in relation to visual pigment photolysis and regeneration: resonance Raman spectroscopy of a tetrahedral carbinolamine intermediate and oxygen-18 labeling of retinal at the metarhodopsin stage in photoreceptor membranes, J. Am. Chem. Soc., 1987, 109, 7254–7263.

    Article  CAS  Google Scholar 

  24. F. J. Daemen, The chomophore binding space of opsin, Nature, 1978, 276, 847–848.

    Article  CAS  PubMed  Google Scholar 

  25. R. K. Crouch, C. D. Veronee, M. E. Lacy, Inhibition of rhodopsin regeneration by cyclohexyl derivatives, Vision. Res., 1982, 22, 1451–1456.

    Article  CAS  PubMed  Google Scholar 

  26. G. Wald, P. K. Brown, P. H. Smith, Iodopsin, J. Gen. Physiol., 1955, 38, 623–681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. H. Imai, S. Kuwayama, A. Onishi, T. Morizumi, O. Chisaka, Y. Shichida, Molecular properties of rod and cone visual pigments from purified chicken cone pigments to mouse rhodopsin in situ, Photochem. Photobiol. Sci., 2005, 4, 667–674.

    Article  CAS  PubMed  Google Scholar 

  28. S. Kuwayama, H. Imai, T. Morizumi, Y. Shichida, Amino acid residues responsible for the meta-III decay rates in rod and cone visual pigments, Biochemistry, 2005, 44, 2208–2215.

    Article  CAS  PubMed  Google Scholar 

  29. A. Kropf, Is proton transfer the initial photochemical process in vision?, Nature, 1976, 264, 92–94.

    Article  CAS  PubMed  Google Scholar 

  30. R. Crouch, Y. S. Or, Opsin pigments formed with acyclic retinal analogues: Minimum ‘ring portion’ requirements for opsin pigment formation, FEBS Lett., 1983, 158, 139–142.

    Article  CAS  Google Scholar 

  31. B.-. W. Zhang, A. Asato, M. Denny, T. Mirzadegan, A. Trehan, R. Liu, Isomers, visual pigment, and bacteriorhodopsin analogs of 3, 7, 13-trimethyl-10-isopropyl-2, 4, 6, 8, 10-tetradecapentaenal and 3, 7, 11-trimethyl-10-isopropyl-2, 4, 6, 8, 10-dodecapentaenal (two ring open retinal analogs), Bioorg. Chem., 1989, 17, 217–223.

    Article  CAS  Google Scholar 

  32. A. E. Asato, B.-. W. Zhang, M. Denny, T. Mirzadegan, K. Seff, R. S. Liu, A study of the binding site requirements of rhodopsin using isomers of α-retinal and 5-substituted α-retinal analogs, Bioorg. Chem., 1989, 17, 410–421.

    Article  CAS  Google Scholar 

  33. P. Towner, W. Gaertner, B. Walckhoff, D. Oesterhelt, H. Hopf, Regeneration of rhodopsin and bacteriorhodopsin. The role of retinal analogues as inhibitors, Eur. J. Biochem., 1981, 117, 353–359.

    Article  CAS  PubMed  Google Scholar 

  34. G. S. Harbison, S. O. Smith, J. A. Pardoen, J. M. Courtin, J. Lugtenburg, J. Herzfeld, R. A. Mathies, R. G. Griffin, Solid-state carbon-13 NMR detection of a perturbed 6-s-trans chromophore in bacteriorhodopsin, Biochemistry, 1985, 24, 6955–6962.

    Article  CAS  PubMed  Google Scholar 

  35. B. Isralewitz, S. Izrailev, K. Schulten, Binding Pathway of Retinal to Bacterio-Opsin: A Prediction by Molecular Dynamics Simulations, Biophys. J., 1997, 73, 2972–2979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. A. Warshel, Bicycle-pedal model for the first step in the vision process, Nature, 1976, 260, 679–683.

    Article  CAS  PubMed  Google Scholar 

  37. R. S. Liu, A. E. Asato, The primary process of vision and the structure of bathorhodopsin: a mechanism for photoisomerization of polyenes, Proc. Natl. Acad. Sci. U. S. A., 1985, 82, 259–263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. R. W. Schoenlein, L. A. Peteanu, R. A. Mathies, C. V. Shank, The first step in vision: femtosecond isomerization of rhodopsin, Science, 1991, 254, 412–415.

    Article  CAS  PubMed  Google Scholar 

  39. J. Herbst, K. Heyne, R. Diller, Femtosecond infrared spectroscopy of bacteriorhodopsin chromophore isomerization, Science, 2002, 297, 822–825.

    Article  CAS  PubMed  Google Scholar 

  40. S. L. Logunov, L. Song, M. A. El-Sayed, Excited-state dynamics of a protonated retinal Schiff base in solution, J. Phys. Chem., 1996, 100, 18586–18591.

    Article  CAS  Google Scholar 

  41. H. Kandori, Y. Katsura, M. Ito, H. Sasabe, Femtosecond Fluorescence Study of the Rhodopsin Chromophore in Solution, J. Am. Chem. Soc., 1995, 117, 2669–2670.

    Article  CAS  Google Scholar 

  42. H. Nakamichi, T. Okada, Local peptide movement in the photoreaction intermediate of rhodopsin, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 12729–12734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. G. Steinberg, M. Ottolenghi, M. Sheves, pKa of the protonated Schiff base of bovine rhodopsin. A study with artificial pigments, Biophys. J., 1993, 64, 1499–1502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. J. Liang, G. Steinberg, N. Livnah, M. Sheves, T. G. Ebrey, M. Tsuda, The pKa of the protonated Schiff bases of gecko cone and octopus visual pigments, Biophys. J., 1994, 67, 848–854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. H. Matsumoto, F. Tokunaga, T. Yoshizawa, Accessibility of the iodopsin chromophore, Biochim. Biophys. Acta, 1975, 404, 300–308.

    Article  CAS  PubMed  Google Scholar 

  46. F. Crescitelli, The gecko visual pigment: the dark exchange of chromophore, Vision Res., 1984, 24, 1551–1553.

    Article  CAS  PubMed  Google Scholar 

  47. Y. Shichida, T. Kato, S. Sasayama, Y. Fukada, T. Yoshizawa, Effects of chloride on chicken iodopsin and the chromophore transfer reactions from iodopsin to scotopsin and B-photopsin, Biochemistry, 1990, 29, 5843–5848.

    Article  CAS  PubMed  Google Scholar 

  48. V. J. Kefalov, M. E. Estevez, M. Kono, P. W. Goletz, R. K. Crouch, M. C. Cornwall, K. W. Yau, Breaking the covalent bond–a pigment property that contributes to desensitization in cones, Neuron, 2005, 46, 879–890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. T. Isayama, Y. Chen, M. Kono, W. Degrip, J.-. X. Ma, R. Crouch, C. Makino, Differences in the pharmacological activation of visual opsins, Vis. Neurosci., 2006, 23, 899–908.

    Article  CAS  PubMed  Google Scholar 

  50. D. Corson, M. Cornwall, E. MacNichol, V. Mani, R. Crouch, Transduction noise induced by 4-hydroxy retinals in rod photoreceptors, Biophys. J., 1990, 57, 109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Matsumoto.

Additional information

This manuscript is submitted as a contribution to the special issue dedicated to the 16th International Conference on Retinal Proteins held in Nagahama, Japan, on October 5-10, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsumoto, H., Iwasa, T. & Yoshizawa, T. The role of the non-covalent β-ionone-ring binding site in rhodopsin: historical and physiological perspective. Photochem Photobiol Sci 14, 1932–1940 (2015). https://doi.org/10.1039/c5pp00158g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c5pp00158g

Navigation