Issue 31, 2015

Mode-specific study of nanoparticle-mediated optical interactions in an absorber/metal thin film system

Abstract

We present an experimental and theoretical study of the electromagnetic interaction between a single gold nanoparticle and a thin gold substrate separated by a sub-50 nm-thick optically absorptive polythiophene spacer layer. Single-particle dark-field scattering spectra show distinct resonance features assigned to four different modes: a horizontal image dipole coupling mode, a vertical image dipole coupling mode and horizontal and vertical coupling modes between localized surface plasmon resonances (LSPRs) and surface plasmon polaritons (SPPs). Relatively broadband spectral tuning of the modes can be achieved by modification of the thickness of either the absorptive spacer or the underlying metal film. Dark-field images also reveal the existence of particles for which the signal of the horizontal image dipole coupling mode is suppressed. This is attributed to partial-embedding of gold nanoparticles into the polythiophene spacer and leads to higher scattered light intensities at longer wavelengths. Full-field electromagnetic simulations show good agreement with the experimental results for the various sample conditions. Strong local electric field confinement at longer wavelengths in the polythiophene spacer, due to the vertical image dipole coupling mode and a LSPR–SPP coupling mode, is also observed in simulations and contributes to absorption enhancement in the spacer. Furthermore, we find absorption enhancement in the semiconducting polythiophene spacer increases with decreasing thickness, indicating the increased light trapping ability of the gold nanoparticles for ultra-thin semiconductor layers. The need for ever-thinner semiconductor layers in optoelectronic devices requires effective light trapping at deeply-subwavelength scales. This work demonstrates that light trapping in sub-50 nm-thick semiconductor layers is possible using a “sphere-on-plane” system and offers insight into how coupling modes can be manipulated in this system.

Graphical abstract: Mode-specific study of nanoparticle-mediated optical interactions in an absorber/metal thin film system

Supplementary files

Article information

Article type
Paper
Submitted
07 Apr 2015
Accepted
03 Jun 2015
First published
04 Jun 2015

Nanoscale, 2015,7, 13196-13206

Mode-specific study of nanoparticle-mediated optical interactions in an absorber/metal thin film system

B. Yu, J. Woo, M. Kong and D. M. O'Carroll, Nanoscale, 2015, 7, 13196 DOI: 10.1039/C5NR02217G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements