Skip to main content

Advertisement

Log in

ER stress, autophagy and immunogenic cell death in photodynamic therapy-induced anti-cancer immune responses

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Tumours are a form of pseudo-organs with their own microenvironment where the cancer cells nurture a dysfunctional immune environment incapable of inciting anti-tumour immunity. It had been proposed that the only way to counteract such an immune system dysfunction in tumours is by eliciting, therapeutically, a cancer cell death pathway that is accompanied by high immunogenicity and possibly inhibits or reduces the influence of the pro-tumourigenic cytokine signalling. Subsequently, a small and a large-scale screening study as well as several targeted studies found that few, selected anticancer therapeutic regimens are able to induce a promising kind of cancer cell demise called immunogenic cell death (ICD), which can activate the immune system owing to the spatiotemporally defined emission of danger signals. Recently, photodynamic therapy (PDT) utilizing the photosensitiser, hypericin (Hyp), became the first PDT paradigm characterized to be capable of inducing bona fide ICD. In the present perspective, we discuss the various technical, conceptual, and molecular advancements and unprecedented results revealed by Hyp-PDT that have influenced the fields of ICD, ER stress biology, cancer cell death, anti-cancer immune responses, photoimmunology and PDT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Hanahan and R. A. Weinberg, Hallmarks of cancer: the next generation, Cell, 2011, 144, 646–674.

    Article  CAS  PubMed  Google Scholar 

  2. L. Zitvogel, A. Tesniere and G. Kroemer, Cancer despite immunosurveillance: immunoselection and immunosubversion, Nat. Rev. Immunol., 2006, 6, 715–727.

    Article  CAS  PubMed  Google Scholar 

  3. S. Chiba, M. Baghdadi, H. Akiba, H. Yoshiyama, I. Kinoshita, H. Dosaka-Akita, Y. Fujioka, Y. Ohba, J. V. Gorman, J. D. Colgan, M. Hirashima, T. Uede, A. Takaoka, H. Yagita and M. Jinushi, Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1, Nat. Immunol., 2012, 13, 832–842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. S. I. Grivennikov, F. R. Greten and M. Karin, Immunity, inflammation, and cancer, Cell, 2010, 140, 883–899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. A. D. Garg, A. M. Dudek and P. Agostinis, Cancer immunogenicity, danger signals, and DAMPs: What, when, and how?, Biofactors, 2013, 39, 355–367.

    Article  CAS  PubMed  Google Scholar 

  6. A. D. Garg, A. Kaczmarek, O. Krysko, P. Vandenabeele, D. V. Krysko and P. Agostinis, ER stress-induced inflammation: does it aid or impede disease progression?, Trends Mol. Med., 2012, 18, 589–598.

    Article  CAS  PubMed  Google Scholar 

  7. A. D. Garg, D. Nowis, J. Golab, P. Vandenabeele, D. V. Krysko and P. Agostinis, Immunogenic cell death, DAMPs and anticancer therapeutics: an emerging amalgamation, Biochim. Biophys. Acta, 2010, 1805, 53–71.

    CAS  PubMed  Google Scholar 

  8. G. Kroemer, L. Galluzzi, O. Kepp and L. Zitvogel, Immunogenic cell death in cancer therapy, Annu. Rev. Immunol., 2013, 31, 51–72.

    Article  CAS  PubMed  Google Scholar 

  9. A. M. Dudek, A. D. Garg, D. V. Krysko, D. De Ruysscher and P. Agostinis, Inducers of immunogenic cancer cell death, Cytokine Growth Factor Rev., 2013, 24, 319–333.

    Article  CAS  PubMed  Google Scholar 

  10. D. V. Krysko, A. D. Garg, A. Kaczmarek, O. Krysko, P. Agostinis and P. Vandenabeele, Immunogenic cell death and DAMPs in cancer therapy, Nat. Rev. Cancer, 2012, 12, 860–875.

    Article  CAS  PubMed  Google Scholar 

  11. L. Galluzzi, O. Kepp and G. Kroemer, Enlightening the impact of immunogenic cell death in photodynamic cancer therapy, EMBO J., 2012, 31, 1055–1057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. M. Obeid, A. Tesniere, F. Ghiringhelli, G. M. Fimia, L. Apetoh, J. L. Perfettini, M. Castedo, G. Mignot, T. Panaretakis, N. Casares, D. Metivier, N. Larochette, P. van Endert, F. Ciccosanti, M. Piacentini, L. Zitvogel and G. Kroemer, Calreticulin exposure dictates the immunogenicity of cancer cell death, Nat. Med., 2007, 13, 54–61.

    Article  CAS  PubMed  Google Scholar 

  13. L. Menger, E. Vacchelli, S. Adjemian, I. Martins, Y. Ma, S. Shen, T. Yamazaki, A. Q. Sukkurwala, M. Michaud, G. Mignot, F. Schlemmer, E. Sulpice, C. Locher, X. Gidrol, F. Ghiringhelli, N. Modjtahedi, L. Galluzzi, F. Andre, L. Zitvogel, O. Kepp and G. Kroemer, Cardiac glycosides exert anticancer effects by inducing immunogenic cell death, Sci. Transl. Med., 2012, 4, 143–199.

    Article  CAS  Google Scholar 

  14. A. D. Garg, S. Martin, J. Golab and P. Agostinis, Danger signalling during cancer cell death: origins, plasticity and regulation, Cell Death Differ., 2014, 21, 26–38.

    Article  CAS  PubMed  Google Scholar 

  15. A. D. Garg, D. V. Krysko, P. Vandenabeele and P. Agostinis, DAMPs and PDT-mediated photo-oxidative stress: exploring the unknown, Photochem. Photobiol. Sci., 2011, 10, 670–680.

    Article  CAS  PubMed  Google Scholar 

  16. N. Casares, M. O. Pequignot, A. Tesniere, F. Ghiringhelli, S. Roux, N. Chaput, E. Schmitt, A. Hamai, S. Hervas-Stubbs, M. Obeid, F. Coutant, D. Metivier, E. Pichard, P. Aucouturier, G. Pierron, C. Garrido, L. Zitvogel and G. Kroemer, Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death, J. Exp. Med., 2005, 202, 1691–1701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. R. Spisek, A. Charalambous, A. Mazumder, D. H. Vesole, S. Jagannath and M. V. Dhodapkar, Bortezomib enhances dendritic cell (DC)-mediated induction of immunity to human myeloma via exposure of cell surface heat shock protein 90 on dying tumor cells: therapeutic implications, Blood, 2007, 109, 4839–4845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. T. Panaretakis, O. Kepp, U. Brockmeier, A. Tesniere, A. C. Bjorklund, D. C. Chapman, M. Durchschlag, N. Joza, G. Pierron, P. van Endert, J. Yuan, L. Zitvogel, F. Madeo, D. B. Williams and G. Kroemer, Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death, EMBO J., 2009, 28, 578–590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. A. D. Garg, D. V. Krysko, T. Verfaillie, A. Kaczmarek, G. B. Ferreira, T. Marysael, N. Rubio, M. Firczuk, C. Mathieu, A. J. Roebroek, W. Annaert, J. Golab, P. de Witte, P. Vandenabeele and P. Agostinis, A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death, EMBO J., 2012, 31, 1062–1079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. A. D. Garg, D. V. Krysko, P. Vandenabeele and P. Agostinis, Hypericin-based photodynamic therapy induces surface exposure of damage-associated molecular patterns like HSP70 and calreticulin, Cancer Immunol. Immunother., 2012, 61, 215–221.

    Article  CAS  PubMed  Google Scholar 

  21. A. D. Garg, D. V. Krysko, P. Vandenabeele and P. Agostinis, The emergence of phox-ER stress induced immunogenic apoptosis, OncoImmunology, 2012, 1, 786–788.

    Article  PubMed  PubMed Central  Google Scholar 

  22. A. D. Garg, M. Bose, M. I. Ahmed, W. A. Bonass and S. R. Wood, In vitro studies on erythrosine-based photodynamic therapy of malignant and pre-malignant oral epithelial cells, PLoS One, 2012, 7, e34475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. A. D. Garg, D. Nowis, J. Golab and P. Agostinis, Photodynamic therapy: illuminating the road from cell death towards anti-tumour immunity, Apoptosis, 2010, 15, 1050–1071.

    Article  CAS  PubMed  Google Scholar 

  24. T. Verfaillie, N. Rubio, A. D. Garg, G. Bultynck, R. Rizzuto, J. P. Decuypere, J. Piette, C. Linehan, S. Gupta, A. Samali and P. Agostinis, PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress, Cell Death Differ., 2012, 19, 1880–1891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. A. D. Garg, A. M. Dudek, G. B. Ferreira, T. Verfaillie, P. Vandenabeele, D. V. Krysko, C. Mathieu and P. Agostinis, ROS-induced autophagy in cancer cells assists in evasion from determinants of immunogenic cell death, Autophagy, 2013, 9, 1292–1307.

    Article  CAS  PubMed  Google Scholar 

  26. A. D. Garg, A. M. Dudek and P. Agostinis, Calreticulin surface exposure is abrogated in cells lacking, chaperone-mediated autophagy-essential gene, LAMP2A, Cell Death Dis., 2013, 4, e826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. A. D. Garg, A. M. Dudek and P. Agostinis, Autophagy-dependent suppression of cancer immunogenicity and effector mechanisms of innate and adaptive immunity, OncoImmunology, 2013, 2, e26260.

    Article  PubMed  PubMed Central  Google Scholar 

  28. T. Verfaillie, A. van Vliet, A. D. Garg, M. Dewaele, N. Rubio, S. Gupta, P. de Witte, A. Samali and P. Agostinis, Pro-apoptotic signaling induced by photo-oxidative ER stress is amplified by Noxa, not Bim, Biochem. Biophys. Res. Commun., 2013, 438, 500–506.

    Article  CAS  PubMed  Google Scholar 

  29. P. Agostinis, A. Vantieghem, W. Merlevede, P. A. de Witte, Hypericin in cancer treatment: more light on the way, Int. J. Biochem. Cell Biol., 2002, 34, 221–241.

    Article  CAS  PubMed  Google Scholar 

  30. G. Lajos, D. Jancura, P. Miskovsky, J. V. Garcia-Ramos, S. Sanchez-Cortes, Interaction of the Photosensitizer Hypericin with Low-Density Lipoproteins and Phosphatidylcholine: A Surface-Enhanced Raman Scattering and Surface-Enhanced Fluorescence Study, J. Phys. Chem. C, 2009, 113, 7147–7154.

    Article  CAS  Google Scholar 

  31. F. E. Fox, Z. Niu, A. Tobia and A. H. Rook, Photoactivated hypericin is an anti-proliferative agent that induces a high rate of apoptotic death of normal, transformed, and malignant T lymphocytes: implications for the treatment of cutaneous lymphoproliferative and inflammatory disorders, J. Invest. Dermatol., 1998, 111, 327–332.

    Article  CAS  PubMed  Google Scholar 

  32. G. Lavie, Y. Mazur, D. Lavie and D. Meruelo, The chemical and biological properties of hypericin—a compound with a broad spectrum of biological activities, Med. Res. Rev., 1995, 15, 111–119.

    Article  CAS  PubMed  Google Scholar 

  33. G. van Meer, D. R. Voelker and G. W. Feigenson, Membrane lipids: where they are and how they behave, Nat. Rev. Mol. Cell Biol., 2008, 9, 112–124.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. E. Buytaert, G. Callewaert, N. Hendrickx, L. Scorrano, D. Hartmann, L. Missiaen, J. R. Vandenheede, I. Heirman, J. Grooten and P. Agostinis, Role of endoplasmic reticulum depletion and multidomain proapoptotic BAX and BAK proteins in shaping cell death after hypericin-mediated photodynamic therapy, FASEB J., 2006, 20, 756–758.

    Article  CAS  PubMed  Google Scholar 

  35. Y. Sonntag, M. Musgaard, C. Olesen, B. Schiott, J. V. Moller, P. Nissen and L. Thogersen, Mutual adaptation of a membrane protein and its lipid bilayer during conformational changes, Nat. Commun., 2011, 2, 304.

    Article  PubMed  CAS  Google Scholar 

  36. M. Heil, Damaged-self recognition as a general strategy for injury detection, Plant Signal. Behav., 2012, 7, 576–580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. T. S. Walker, H. Pal Bais and J. M. Vivanco, Jasmonic acid-induced hypericin production in cell suspension cultures of Hypericum perforatum L. (St. John’s wort), Phytochemistry, 2002, 60, 289–293.

    Article  CAS  PubMed  Google Scholar 

  38. M. Heil, E. Ibarra-Laclette, R. M. Adame-Alvarez, O. Martinez, E. Ramirez-Chavez, J. Molina-Torres, L. Herrera-Estrella, How plants sense wounds: damaged-self recognition is based on plant-derived elicitors and induces octadecanoid signaling, PLoS One, 2012, 7, e30537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. G. Schiavoni, A. Sistigu, M. Valentini, F. Mattei, P. Sestili, F. Spadaro, M. Sanchez, S. Lorenzi, M. T. D’Urso, F. Belardelli, L. Gabriele, E. Proietti and L. Bracci, Cyclophosphamide synergizes with type I interferons through systemic dendritic cell reactivation and induction of immunogenic tumor apoptosis, Cancer Res., 2011, 71, 768–778.

    Article  CAS  PubMed  Google Scholar 

  40. H. M. Chen, P. H. Wang, S. S. Chen, C. C. Wen, Y. H. Chen, W. C. Yang and N. S. Yang, Shikonin induces immunogenic cell death in tumor cells and enhances dendritic cell-based cancer vaccine, Cancer Immunol. Immunother., 2012, 61, 1989–2002.

    Article  CAS  PubMed  Google Scholar 

  41. G. Garrido, A. Rabasa, B. Sanchez, M. V. Lopez, R. Blanco, A. Lopez, D. R. Hernandez, R. Perez and L. E. Fernandez, Induction of immunogenic apoptosis by blockade of epidermal growth factor receptor activation with a specific antibody, J. Immunol., 2011, 187, 4954–4966.

    Article  CAS  PubMed  Google Scholar 

  42. T. Verfaillie, A. D. Garg and P. Agostinis, Targeting ER stress induced apoptosis and inflammation in cancer, Cancer Lett., 2013, 332, 249–264.

    Article  CAS  PubMed  Google Scholar 

  43. A. M. Dudek, S. Martin, A. D. Garg and P. Agostinis, Immature, Semi-Mature, and Fully Mature Dendritic Cells: Toward a DC-Cancer Cells Interface That Augments Anticancer Immunity, Front. Immunol., 2013, 4, 438.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. S. Song, F. Zhou, W. R. Chen and D. Xing, PDT-induced HSP70 externalization up-regulates NO production via TLR2 signal pathway in macrophages, FEBS Lett., 2013, 587, 128–135.

    Article  CAS  PubMed  Google Scholar 

  45. Y. Ma, L. Aymeric, C. Locher, S. R. Mattarollo, N. F. Delahaye, P. Pereira, L. Boucontet, L. Apetoh, F. Ghiringhelli, N. Casares, J. J. Lasarte, G. Matsuzaki, K. Ikuta, B. Ryffel, K. Benlagha, A. Tesniere, N. Ibrahim, J. Dechanet-Merville, N. Chaput, M. J. Smyth, G. Kroemer and L. Zitvogel, Contribution of IL-17-producing gamma delta T cells to the efficacy of anticancer chemotherapy, J. Exp. Med., 2011, 208, 491–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. G. Curtale, M. Mirolo, T. A. Renzi, M. Rossato, F. Bazzoni and M. Locati, Negative regulation of Toll-like receptor 4 signaling by IL-10-dependent microRNA-146b, Proc. Natl. Acad. Sci. U. S. A., 2013, 110, 11499–11504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. R. Sanovic, T. Verwanger, A. Hartl and B. Krammer, Low dose hypericin-PDT induces complete tumor regression in BALB/c mice bearing CT26 colon carcinoma, Photodiagn. Photodyn. Ther., 2011, 8, 291–296.

    Article  CAS  Google Scholar 

  48. H. Maes, N. Rubio, A. D. Garg and P. Agostinis, Autophagy: shaping the tumor microenvironment and therapeutic response, Trends Mol. Med., 2013, 19, 428–446.

    Article  CAS  PubMed  Google Scholar 

  49. S. Shen, O. Kepp, M. Michaud, I. Martins, H. Minoux, D. Metivier, M. C. Maiuri, R. T. Kroemer and G. Kroemer, Association and dissociation of autophagy, apoptosis and necrosis by systematic chemical study, Oncogene, 2011, 30, 4544–4556.

    Article  CAS  PubMed  Google Scholar 

  50. M. Dewaele, W. Martinet, N. Rubio, T. Verfaillie, P. A. de Witte, J. Piette and P. Agostinis, Autophagy pathways activated in response to PDT contribute to cell resistance against ROS damage, J. Cell Mol. Med., 2011, 15, 1402–1414.

    Article  CAS  PubMed  Google Scholar 

  51. M. Michaud, I. Martins, A. Q. Sukkurwala, S. Adjemian, Y. Ma, P. Pellegatti, S. Shen, O. Kepp, M. Scoazec, G. Mignot, S. Rello-Varona, M. Tailler, L. Menger, E. Vacchelli, L. Galluzzi, F. Ghiringhelli, F. di Virgilio, L. Zitvogel and G. Kroemer, Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice, Science, 2011, 334, 1573–1577.

    Article  CAS  PubMed  Google Scholar 

  52. E. Tasdemir, M. Chiara Maiuri, E. Morselli, A. Criollo, M. D’Amelio, M. Djavaheri-Mergny, F. Cecconi, N. Tavernarakis and G. Kroemer, A dual role of p53 in the control of autophagy, Autophagy, 2008, 4, 810–814.

    Article  CAS  PubMed  Google Scholar 

  53. N. Rubio, I. Coupienne, E. Di Valentin, I. Heirman, J. Grooten, J. Piette and P. Agostinis, Spatiotemporal autophagic degradation of oxidatively damaged organelles after photodynamic stress is amplified by mitochondrial reactive oxygen species, Autophagy, 2012, 8, 1312–1324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. M. Z. Noman, B. Janji, B. Kaminska, K. Van Moer, S. Pierson, P. Przanowski, S. Buart, G. Berchem, P. Romero, F. Mami-Chouaib and S. Chouaib, Blocking hypoxia-induced autophagy in tumors restores cytotoxic T-cell activity and promotes regression, Cancer Res., 2011, 71, 5976–5986.

    Article  CAS  PubMed  Google Scholar 

  55. H. Wei, S. Wei, B. Gan, X. Peng, W. Zou and J. L. Guan, Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis, Genes Dev., 2011, 25, 1510–1527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. B. Ravikumar, M. Futter, L. Jahreiss, V. I. Korolchuk, M. Lichtenberg, S. Luo, D. C. Massey, F. M. Menzies, U. Narayanan, M. Renna, M. Jimenez-Sanchez, S. Sarkar, B. Underwood, A. Winslow and D. C. Rubinsztein, Mammalian macroautophagy at a glance, J. Cell Sci., 2009, 122, 1707–1711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. W. W. Li, J. Li and J. K. Bao, Microautophagy: lesser-known self-eating, Cell. Mol. Life Sci., 2012, 69, 1125–1136.

    Article  CAS  PubMed  Google Scholar 

  58. A. C. Massey, S. Kaushik, G. Sovak, R. Kiffin and A. M. Cuervo, Consequences of the selective blockage of chaperone-mediated autophagy, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 5805–5810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. R. Sahu, S. Kaushik, C. C. Clement, E. S. Cannizzo, B. Scharf, A. Follenzi, I. Potolicchio, E. Nieves, A. M. Cuervo and L. Santambrogio, Microautophagy of cytosolic proteins by late endosomes, Dev. Cell, 2011, 20, 131–139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson and J. Golab, Photodynamic therapy of cancer: An update, CA Cancer J. Clin., 2011, 61, 250–281.

    Article  PubMed  PubMed Central  Google Scholar 

  61. J. M. Kaminski, E. Shinohara, J. B. Summers, K. J. Niermann, A. Morimoto and J. Brousal, The controversial abscopal effect, Cancer Treat. Rev., 2005, 31, 159–172.

    Article  CAS  PubMed  Google Scholar 

  62. A. Kubin, F. Wierrani, U. Burner, G. Alth and W. Grunberger, Hypericin–the facts about a controversial agent, Curr. Pharm. Des., 2005, 11, 233–253.

    Article  CAS  PubMed  Google Scholar 

  63. S. Kocanova, E. Buytaert, J. Y. Matroule, J. Piette, J. Golab, P. de Witte and P. Agostinis, Induction of heme-oxygenase 1 requires the p38MAPK and PI3 K pathways and suppresses apoptotic cell death following hypericin-mediated photodynamic therapy, Apoptosis, 2007, 12, 731–741.

    Article  CAS  PubMed  Google Scholar 

  64. P. Matzinger, Tolerance, danger, and the extended family, Annu. Rev. Immunol., 1994, 12, 991–1045.

    Article  CAS  PubMed  Google Scholar 

  65. A. Tesniere, T. Panaretakis, O. Kepp, L. Apetoh, F. Ghiringhelli, L. Zitvogel and G. Kroemer, Molecular characteristics of immunogenic cancer cell death, Cell Death Differ., 2008, 15, 3–12.

    Article  CAS  PubMed  Google Scholar 

  66. L. Zitvogel, O. Kepp and G. Kroemer, Decoding cell death signals in inflammation and immunity, Cell, 2010, 140, 798–804.

    Article  CAS  PubMed  Google Scholar 

  67. M. Korbelik, B. Stott and J. Sun, Photodynamic therapy-generated vaccines: relevance of tumour cell death expression, Br. J. Cancer, 2007, 97, 1381–1387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. M. Korbelik, J. Sun and I. Cecic, Photodynamic therapy-induced cell surface expression and release of heat shock proteins: relevance for tumor response, Cancer Res., 2005, 65, 1018–1026.

    CAS  PubMed  Google Scholar 

  69. M. Korbelik, Cancer vaccines generated by photodynamic therapy, Photochem. Photobiol. Sci., 2011, 10, 664–669.

    Article  CAS  PubMed  Google Scholar 

  70. S. O. Gollnick, B. Owczarczak and P. Maier, Photodynamic therapy and anti-tumor immunity, Lasers Surg. Med., 2006, 38, 509–515.

    Article  PubMed  Google Scholar 

  71. A. P. Castano, P. Mroz and M. R. Hamblin, Photodynamic therapy and anti-tumour immunity, Nat. Rev. Cancer, 2006, 6, 535–545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. P. Mroz, F. Vatansever, A. Muchowicz and M. R. Hamblin, Photodynamic Therapy of Murine Mastocytoma Induces Specific Immune Responses against the Cancer/Testis Antigen P1A, Cancer Res., 2013, 73, 6462.

    Article  CAS  PubMed  Google Scholar 

  73. F. Li, Y. Cheng, J. Lu, R. Hu, Q. Wan and H. Feng, Photodynamic therapy boosts anti-glioma immunity in mice: a dependence on the activities of T cells and complement C3, J. Cell. Biochem., 2011, 112, 3035–3043.

    Article  CAS  PubMed  Google Scholar 

  74. P. Mroz, J. T. Hashmi, Y. Y. Huang, N. Lange and M. R. Hamblin, Stimulation of anti-tumor immunity by photodynamic therapy, Expert Rev. Clin. Immunol., 2011, 7, 75–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. M. Korbelik, W. Zhang and S. Merchant, Involvement of damage-associated molecular patterns in tumor response to photodynamic therapy: surface expression of calreticulin and high-mobility group box-1 release, Cancer Immunol. Immunother., 2011, 60, 1431–1437.

    Article  CAS  PubMed  Google Scholar 

  76. A. Kamuhabwa, P. Agostinis, B. Ahmed, W. Landuyt, B. van Cleynenbreugel, H. van Poppel, P. de Witte, Hypericin as a potential phototherapeutic agent in superficial transitional cell carcinoma of the bladder, Photochem. Photobiol. Sci., 2004, 3, 772–780.

    Article  CAS  PubMed  Google Scholar 

  77. A. Q. Sukkurwala, I. Martins, Y. Wang, F. Schlemmer, C. Ruckenstuhl, M. Durchschlag, M. Michaud, L. Senovilla, A. Sistigu, Y. Ma, E. Vacchelli, E. Sulpice, X. Gidrol, L. Zitvogel, F. Madeo, L. Galluzzi, O. Kepp and G. Kroemer, Immunogenic calreticulin exposure occurs through a phylogenetically conserved stress pathway involving the chemokine CXCL8, Cell Death Differ., 2014, 21, 59–68.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abhishek D. Garg or Patrizia Agostinis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garg, A.D., Agostinis, P. ER stress, autophagy and immunogenic cell death in photodynamic therapy-induced anti-cancer immune responses. Photochem Photobiol Sci 13, 474–487 (2014). https://doi.org/10.1039/c3pp50333j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c3pp50333j

Navigation