Issue 13, 2012

Modulation of surface wettability of superhydrophobic substrates using Si nanowire arrays and capillary-force-induced nanocohesion

Abstract

We describe a new scalable method to fabricate large-area hybrid superhydrophobic surfaces with selective adhesion properties on silicon (Si) nanowire array substrates by exploiting liquid-medium-dependent capillary-force-induced nanocohesion. Gold (Au) nanoparticles were deposited on Si by glancing angle deposition followed by metal-assisted chemical etching of Si to form Si nanowire arrays. The surfaces were dried in either deionized (DI) water, 2-propanol or methanol to vary the capillary forces exerted on the Si nanowires during the drying process in order to tune the extent of clustering of nanowires and hence the adhesion properties of the resulting superhydrophobic surfaces. Here, we exploit the combined effects of surface tension and Young's contact angle to modulate the degree of clustering of the Si nanowires during capillary-force-induced nanocohesion. These surfaces were chemically modified and rendered hydrophobic by fluorosilane deposition. Drying in DI water resulted in small clusters of nanowires which produce a low-hysteresis superhydrophobic surface that mimics a lotus leaf. Drying in methanol resulted in large nanowire clusters that lead to a high-hysteresis superhydrophobic surface. Further, we demonstrate the ability to fabricate both small and large nanowire clusters by controlling the drying of the nanowire arrays in order to selectively define and modulate adhesion of water on the same superhydrophobic substrate. The simplicity of our process to tune surface wettability on single substrates paves the way for future applications in lab-on-chip devices and platforms for chemical and biological analyses.

Graphical abstract: Modulation of surface wettability of superhydrophobic substrates using Si nanowire arrays and capillary-force-induced nanocohesion

Supplementary files

Article information

Article type
Paper
Submitted
01 Dec 2011
Accepted
05 Jan 2012
First published
14 Feb 2012

Soft Matter, 2012,8, 3549-3557

Modulation of surface wettability of superhydrophobic substrates using Si nanowire arrays and capillary-force-induced nanocohesion

M. K. Dawood, H. Zheng, N. A. Kurniawan, K. C. Leong, Y. L. Foo, R. Rajagopalan, S. A. Khan and W. K. Choi, Soft Matter, 2012, 8, 3549 DOI: 10.1039/C2SM07279C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements