Issue 32, 2012

The structures and stability of BnNn clusters with octagon(s)

Abstract

The structures and stability of (BN)n clusters with alternate B and N atoms containing squares, hexagons and octagons ((BN)n-F4F6F8) are investigated by using density functional theory. The results demonstrate that the isomers of (BN)n-F4F6F8 clusters generally satisfy the isolated-square rule (ISR) and the square adjacency penalty rule (SAPR). The energetically favorable isomers generally have fewer square–square bonds, larger HOMO–LUMO gaps, lower sphericity and asphericity, as well as lower pyramidalization of B and N atoms than other structures. As a whole, the stability of (BN)n-F4F6F8 clusters decreases with the number of octagons. However, four isomers containing one or two octagons in four isomeric clusters (i.e. (BN)n-F4F6F8 (n = 19, 20, 23, and 24) are more thermodynamically stable than their (BN)n-F4F6 counterparts. Further structural analysis demonstrates that octagon(s) of (BN)n-F4F6F8 clusters can release the strain energy by decreasing the pyramidalization angles of the corresponding vertex. Finally, the entropy effect is examined to evaluate the relative stability of (BN)n-F4F6F8 (n = 19, 20, 23, and 24) clusters at high temperatures.

Graphical abstract: The structures and stability of BnNn clusters with octagon(s)

Supplementary files

Article information

Article type
Paper
Submitted
07 Aug 2012
Accepted
11 Oct 2012
First published
12 Oct 2012

RSC Adv., 2012,2, 12466-12473

The structures and stability of BnNn clusters with octagon(s)

L. Gan, R. Li and J. An, RSC Adv., 2012, 2, 12466 DOI: 10.1039/C2RA21720A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements