Skip to main content
Log in

Photochemical and photocatalytic degradation of trans-resveratrol

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Photochemical and photocatalytic degradation of the emerging pollutant trans-resveratrol has been studied under different irradiation wavelengths and using different TiO2 catalysts. trans-Resveratrol was more easily degraded when irradiated using the whole spectral range (UV-Vis) rather than with UV and near-UV to visible irradiation. The main intermediate of trans-resveratrol phototransformation was identified as its isomer cis-resveratrol. Different TiO2 catalysts were used to carry out the photocatalytic degradation of trans-resveratrol. Catalysts properties such as crystallite dimensions, surface area and presence of hydroxy surface groups are shown to be crucial to the photocatalytic efficiency of the materials tested. From the point of view of trans-resveratrol abatement, the photocatalytic process was more efficient than the pure photochemical one resulting in higher degradation rates and higher organic content removal. Six photoproducts of trans-resveratrol phototransformation were identified mainly resulting from the attack of the hydroxyl radical to the organic molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. G. Daughton, T. A. Ternes, Pharmaceuticals and personal care products in the environment: agents of subtle change?, Environ. Health Perspect., 1999, 107, 907–938.

    Article  CAS  Google Scholar 

  2. S. A. Snyder, P. Westerhoff, Y. Yoon, D. L. Sedlak, Pharmaceuticals, personal care products, and endocrine disruptors in water: implications for the water industry, Environ. Eng. Sci., 2003, 20, 449–469.

    Article  CAS  Google Scholar 

  3. D. Fatta-Kassinos, S. Meric, A. Nikolaou, Pharmaceutical residues in environmental waters and wastewater: current state of knowledge and future research, Anal. Bioanal. Chem., 2011, 399, 251–275.

    Article  CAS  Google Scholar 

  4. A. Nikolaou, S. Meric, D. Fatta, Occurrence patterns of pharmaceuticals in water and wastewater environments, Anal. Bioanal. Chem., 2007, 387, 1225–1234.

    Article  CAS  Google Scholar 

  5. G. Mascolo, L. Balest, D. Cassano, G. Laera, A. Lopez, A. Pollice, C. Salerno, Biodegradability of pharmaceutical industrial wastewater and formation of recalcitrant organic compounds during aerobic biological treatment, Bioresour. Technol., 2010, 101, 2585–2591.

    Article  CAS  Google Scholar 

  6. U. I. Gaya, A. H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems, J. Photochem. Photobiol., C, 2008, 9, 1–12.

    Article  CAS  Google Scholar 

  7. P. R. Gogate, A. B. Pandit, A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions, Adv. Environ. Res., 2004, 8, 501–551.

    Article  CAS  Google Scholar 

  8. O. Carp, C. L. Huisman, A. Reller, Photoinduced reactivity of titanium dioxide, Prog. Solid State Chem., 2004, 32, 33–177.

    Article  CAS  Google Scholar 

  9. A. Fujishima, T. N. Rao, D. A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobiol., C, 2000, 1, 1–21.

    Article  CAS  Google Scholar 

  10. S. Bradamante, L. Barenghi, A. Villa, Cardiovascular protective effects of resveratrol, Cardiovasc. Drug Rev., 2004, 22, 169–188.

    Article  CAS  Google Scholar 

  11. M. S. Jang, E. N. Cai, G. O. Udeani, K. V. Slowing, C. F. Thomas, C. W. W. Beecher, H. H. S. Fong, N. R. Farnsworth, A. D. Kinghorn, R. G. Mehta, R. C. Moon, J. M. Pezzuto, Cancer chemopreventive activity of resveratrol, a natural product derived from grapes, Science, 1997, 275, 218–220.

    Article  CAS  Google Scholar 

  12. I. Tosun, A. N. Inkaya, Resveratrol as a health and disease benefit agent, Food Rev. Int., 2010, 26, 85–101.

    Article  CAS  Google Scholar 

  13. J. Burns, T. Yokota, H. Ashihara, M. E. J. Lean, A. Crozier, Plant foods and herbal sources of resveratrol, J. Agric. Food Chem., 2002, 50, 3337–3340.

    Article  CAS  Google Scholar 

  14. N. Ratola, J. L. Faria, A. Alves, Analysis and quantification of trans-resveratrol in wines from Alentejo region (Portugal), Food Technol. Biotechnol., 2004, 42, 125–130.

    CAS  Google Scholar 

  15. S. I. Imai, A possibility of nutriceuticals as an anti-aging intervention: activation of sirtuins by promoting mammalian NAD biosynthesis, Pharmacol. Res., 2010, 62, 42–47.

    Article  CAS  Google Scholar 

  16. V. K. Kapoor, J. Dureja, R. Chadha, Synthetic drugs with anti-ageing effects, Drug Discovery Today, 2009, 14, 899–904.

    Article  CAS  Google Scholar 

  17. J. Lopez-Hernandez, P. Paseiro-Losada, A. T. Sanches-Silva, M. A. Lage-Yusty, Study of the changes of trans-resveratrol caused by ultraviolet light and determination of trans- and cis-resveratrol in Spanish white wines, Eur. Food Res. Technol., 2007, 225, 789–796.

    Article  CAS  Google Scholar 

  18. G. Montsko, M. S. P. Nikfardjam, Z. Szabo, K. Boddi, T. Lorand, R. Ohmacht, L. Mark, Determination of products derived from trans-resveratrol UV photoisomerisation by means of HPLC-APCI-MS, J. Photochem. Photobiol., A, 2008, 196, 44–50.

    Article  CAS  Google Scholar 

  19. C. G. Silva, J. L. Faria, Anatase vs. rutile efficiency on the photocatalytic degradation of clofibric acid under near UV to visible irradiation, Photochem. Photobiol. Sci., 2009, 8, 705–711.

    Article  CAS  Google Scholar 

  20. H. J. Kuhn, S. E. Braslavsky, R. Schmidt, Chemical actinometry, Pure Appl. Chem., 2004, 76, 2105–2146.

    Article  CAS  Google Scholar 

  21. J.-M. Herrmann, Fundamentals and misconceptions in photocatalysis, J. Photochem. Photobiol., A, 2010, 216, 85–93.

    Article  CAS  Google Scholar 

  22. Z. B. Zhang, C. C. Wang, R. Zakaria, J. Y. Ying, Role of particle size in nanocrystalline TiO2-based photocatalysts, J. Phys. Chem. B, 1998, 102, 10871–10878.

    Article  CAS  Google Scholar 

  23. C. C. Wang, Z. B. Zhang, J. Y. Ying, Photocatalytic decomposition of halogenated organics over nanocrystalline titania, Nanostruct. Mater., 1997, 9, 583–586.

    Article  CAS  Google Scholar 

  24. Y. F. Gao, Y. Masuda, W. S. Seo, H. Ohta, K. Koumoto, TiO2 nanoparticles prepared using an aqueous peroxotitanate solutions, Ceram. Int., 2004, 30, 1365–1368.

    Article  CAS  Google Scholar 

  25. J. R. S. Brownson, M. I. Tejedor-Tejedor, M. A. Anderson, Photoreactive anatase consolidation characterized by FTIR Spectroscopy, Chem. Mater., 2005, 17, 6304–6310.

    Article  CAS  Google Scholar 

  26. M. Kosmulski, The significance of the difference in the point of zero charge between rutile and anatase, Adv. Colloid Interface Sci., 2002, 99, 255–264.

    Article  CAS  Google Scholar 

  27. M. Deak, H. Falk, On the chemistry of the resveratrol diastereomers, Monatsh. Chem., 2003, 134, 883–888.

    Article  CAS  Google Scholar 

  28. Y. Bader, R. M. Quint, N. Getoff, Resveratrol products resulting by free radical attack, Radiat. Phys. Chem., 2008, 77, 708–712.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cláudia Gomes Silva.

Additional information

This paper is published as part of the themed issue of contributions from the 7th European Meeting on Solar Chemistry and Photocatalysis: Environmental Applications held in Porto, Portugal, June 2012.

Electronic supplementary information (ESI) available. See DOI: 10.1039/c2pp25239b

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, C.G., Monteiro, J., Marques, R.R.N. et al. Photochemical and photocatalytic degradation of trans-resveratrol. Photochem Photobiol Sci 12, 638–644 (2013). https://doi.org/10.1039/c2pp25239b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c2pp25239b

Navigation