Skip to main content

Advertisement

Log in

NIR fluorescent biotinylated cyanine dye: optical properties and combination with quantum dots as a potential sensing device

  • Cummunication
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

We present a water soluble and fluorescent biotinylated probe derived from a carbocyanine dye. A high efficiency of energy transfer was measured when the dyes were placed on the surface of streptavidin conjugated quantum dots. The system is a model platform for potential application as a FRET-based fluorescent sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. M. Wilchek, E. A. Bayer, Introduction to avidin-biotin technology, Methods Enzymol., 1990, 184, 5–13.

    Article  CAS  Google Scholar 

  2. M. Wilchek, E. A. Bayer, O. Livnah, Essentials of biorecognition: the (strept)avidin-biotin system as a model for protein–protein and protein–ligand interaction, Immunol. Lett., 2006, 103, 27–32.

    Article  CAS  Google Scholar 

  3. K. Agiamarnioti, T. Triantis, D. Dimotikali, K. Papadopoulos, Synthesis and fluorescent properties of novel biotinylated labels prospects for application in bioanalytical detections, J. Photochem. Photobiol., C, 2005, 172, 215–221.

    Article  CAS  Google Scholar 

  4. H. J. Gruber, M. Marek, H. Schindler, K. Kaiser, Biotin-fluorophore conjugates with poly(ethylene glycol) spacers retain intense fluorescence after binding to avidin and streptavidin, Bioconjugate Chem., 1997, 8, 552–559.

    Article  CAS  Google Scholar 

  5. D. S. Wilbur, P. M. Pathare, D. K. Hamlin, M. B. Frownfelter, B. B. Kegley, W. Y. Leung, K. R. Gee, Evaluation of biotin-dye conjugates for use in an HPLC assay to assess relative binding of biotin derivatives with avidin and streptavidin, Bioconjugate Chem., 2000, 11, 584–598.

    Article  CAS  Google Scholar 

  6. H. H. Gorris, S. M. Saleh, D. B. M. Groegel, S. Ernst, K. Reiner, H. Mustroph, O. S. Wolfbeis, Long-wavelength absorbing and fluorescent chameleon labels for proteins, peptides, and amines, Bioconjugate Chem., 2011, 227, 1433–1437.

    Article  CAS  Google Scholar 

  7. L.-Q. Ying, B. P. Branchaud, Facile synthesis of symmetric, monofunctional cyanine dyes for imaging applications, Bioconjugate Chem., 2011, 22, 865–869.

    Article  CAS  Google Scholar 

  8. I. L. Medintz, A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher, J. M. Mauro, Self-assembled nanoscale biosensors based on quantum dot FRET donors, Nat. Mater., 2003, 2, 630–638.

    Article  CAS  Google Scholar 

  9. R. Freeman, B. Willner, I. Willner, Integrated bio-molecule-quantum dot hybrid systems for bioanalytical applications, J. Phys. Chem. Lett., 2011, 2, 2667–2677.

    Article  CAS  Google Scholar 

  10. K. Boeneman, B. C. Mei, A. M. Dennis, G. Bao, J. R. Deschamps, H. Mattoussi, I. L. Medintz, Sensing caspase 3 activity with quantum dot-fluorescent protein assemblies, J. Am. Chem. Soc., 2009, 131, 3828–3829.

    Article  CAS  Google Scholar 

  11. A. M. Dennis, W. J. Rhee, D. Sotto, S. N. Dublin, G. Bao, Quantum dot_fluorescent protein FRET probes for sensing intracellular pH, ACS Nano, 2012, 6, 2917–2924.

    Article  CAS  Google Scholar 

  12. R. Freeman, I. Willner, Optical molecular sensing with semiconductor quantum dots (QDs), Chem. Soc. Rev., 2012, 41, 4067–4085.

    Article  CAS  Google Scholar 

  13. R. Tang, L. Hyeran, S. Achilefu, Induction of pH sensitivity on the fluorescence lifetime of quantum dots by NIR fluorescent dyes, J. Am. Chem. Soc., 2012, 134, 4545–4548.

    Article  CAS  Google Scholar 

  14. C. Ornelas, R. Lodescar, A. Durandin, J. W. Canary, R. Pennell, L. F. Liebes, M. Weck, Combining aminocyanine dyes with polyamide dendrons: a promising strategy for imaging in the near-infrared region, Chem.–Eur. J., 2011, 17, 3619–3629.

    Article  CAS  Google Scholar 

  15. J. H. Flanagan Jr., S. H. Khan, S. Menchen, S. A. Soper, R. P. Hammer, Functionalized tricarbocyanine dyes as near-infrared fluorescent probes for biomolecules, Bioconjugate Chem., 1997, 8, 751–756.

    Article  CAS  Google Scholar 

  16. L. Strekowski, M. Lipowska, G. Patonay, Substitution reactions of a nucleofugal group in heptamethine cyanine dyes. Synthesis of an isothiocyanato derivative for labeling of proteins with a near-infrared chromophore, J. Org. Chem., 1992, 57, 4578–4580.

    Article  CAS  Google Scholar 

  17. V. Buschmann, K. D. Weston, M. Sauer, Spectroscopic study and evaluation of red-absorbing fluorescent dyes, Bioconjugate Chem., 2003, 14, 195–204.

    Article  CAS  Google Scholar 

  18. H. J. Gruber, C. D. Hahn, G. Kada, C. K. Riener, G. S. Harms, W. Ahrer, T. G. Dax, H. G. Knaus, Anomalous fluorescence enhancement of Cy3 and Cy3.5 versus anomalous fluorescence loss of Cy5 and Cy7 upon covalent linking to IgG and noncovalent binding to avidin, Bioconjugate Chem., 2000, 11, 696–704.

    Article  CAS  Google Scholar 

  19. G. Kada, H. Falk, H. J. Gruber, Accurate measurement of avidin and streptavidin in crude biofluids with a new, optimized biotin-fluorescein conjugate, Biochim. Biophys. Acta, 1999, 1427, 33–43.

    Article  CAS  Google Scholar 

  20. H. E. Grecco, K. A. Lidke, R. Heintzmann, D. S. Lidke, C. Spagnuolo, O. E. Martinez, E. A. Jares-Eijman, T. M. Jovin, Ensemble and single particle photophysical properties (two-photon excitation, anisotropy, FRET, lifetime, spectral conversion) of commercial quantum dots in solution and in live cells, Microsc. Res. Tech., 2004, 65, 169–179.

    Article  CAS  Google Scholar 

  21. I. L. Medintz, H. T. Uyeda, E. R. Goldman, H. Mattoussi, Quantum dot bioconjugates for imaging, labelling and sensing, Nat. Mater., 2005, 46, 435–446.

    Article  CAS  Google Scholar 

  22. B. Ballou, B. C. Lagerholm, L. A. Ernst, M. P. Bruchez, A. S. Waggoner, Bioconjugate Chem., 2004, 15, 79.

    Article  CAS  Google Scholar 

  23. B. Valeur, Molecular Fluorescence: Principles and Applications, Wiley-VCH, Weinheim, 2002.

    Google Scholar 

  24. P. T. Snee, R. C. Somers, G. Nair, J. P. Zimmer, M. G. Bawendi, D. G. Nocera, A ratiometric CdSe/ZnS nanocrystal pH sensor, J. Am. Chem. Soc., 2006, 12841, 13320–13321.

    Article  CAS  Google Scholar 

  25. R. Mittal, M. P. Bruchez, Biotin-4-fluorescein based fluorescence quenching assay for determination of biotin binding capacity of streptavidin conjugated quantum dots, Bioconjugate Chem., 2011, 223, 362–368.

    Article  CAS  Google Scholar 

  26. S. A. Díaz, G. O. Menéndez, M. H. Etchehon, L. Giordano, T. M. Jovin, E. A. Jares-Erijman, ACS Nano, 2011, 5, 2795.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carla C. Spagnuolo or Elizabeth A. Jares-Erijman.

Additional information

The corresponding author Elizabeth A. Jares-Erijman passed away during the revisions of this communication. The surviving authors dedicate it to her memory and in acknowledgment of her passion for life and work, inspired leadership and unfailing support.

Electronic supplementary information (ESI) available: Detailed experimental procedures, characterization data, spectral properties, pKa measurements, titration experiments. See DOI: 10.1039/c2pp25174d

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menéndez, G.O., Pichel, M.E., Spagnuolo, C.C. et al. NIR fluorescent biotinylated cyanine dye: optical properties and combination with quantum dots as a potential sensing device. Photochem Photobiol Sci 12, 236–240 (2013). https://doi.org/10.1039/c2pp25174d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c2pp25174d

Navigation