Issue 33, 2012

A rapid and green synthetic approach for hierarchically assembled porous ZnO nanoflakes with enhanced catalytic activity

Abstract

Three dimensionally (3D) assembled hierarchical porous ZnO structures are of key importance for their applications in sensors, lithium-ion batteries, solar cells and in catalysis. Here, the controlled synthesis of 3D hierarchically porous ZnO architectures constructed of two dimensional (2D) nano-sheets through the calcination of a hydrozincite [Zn5(CO3)2(OH)6] intermediate is presented. The intermediate 3D hierarchical hydrozincite has been synthesized by a novel organic surfactant and solvent free aqueous protocol at room temperature using an aqueous solution of ammonium carbonate and laboratory grade bulk ZnO in a short time (20–30 min). The amount of carbonate and the reaction temperature play a crucial role in the formation of the 3D hierarchical morphology and on the basis of the experimental results a probable reaction mechanism is proposed. On calcination, the synthesized 3D hierarchical hydrozincite resulted in ZnO with an almost identical morphology to the parental hydrozincite. On decomposition a porous structure having a surface area of 44 m2 g−1 is obtained. The synthesized hierarchical ZnO morphology exhibits an improved catalytic activity for the synthesis of 5-substituted-1H-tetrazoles with different nitriles and sodium azide than that of nanocrystalline ZnO and bulk ZnO, as well as other developed solid catalysts. The catalyst is easily recyclable without a significant loss in catalytic activity.

Graphical abstract: A rapid and green synthetic approach for hierarchically assembled porous ZnO nanoflakes with enhanced catalytic activity

Supplementary files

Article information

Article type
Paper
Submitted
11 May 2012
Accepted
18 Jun 2012
First published
25 Jun 2012

J. Mater. Chem., 2012,22, 17227-17235

A rapid and green synthetic approach for hierarchically assembled porous ZnO nanoflakes with enhanced catalytic activity

A. Sinhamahapatra, A. K. Giri, P. Pal, S. K. Pahari, H. C. Bajaj and A. B. Panda, J. Mater. Chem., 2012, 22, 17227 DOI: 10.1039/C2JM32998K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements