Skip to main content
Log in

Unravelling UVA-induced mutagenesis

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Ultraviolet A (UVA) radiation represents more than 90% of the solar UV radiation reaching Earth’s surface. Exposure to solar UV radiation is a major risk in the occurrence of non-melanoma skin cancer. Whole genome sequencing data of melanoma tumors recently obtained makes it possible also to definitively associate malignant melanoma with sunlight exposure. Even though UVB has long been established as the major cause of skin cancer, the relative contribution of UVA is still unclear. In this review, we first report on the formation of DNA damage induced by UVA radiation, and on recent advances on the associated mechanism. We then discuss the controversial data on the UVA-induced mutational events obtained for various types of eukaryotic cells, including human skin cells. This may help unravel the role of UVA in the various steps of photocarcinogenesis. The connection to photocarcinogenesis is more extensively discussed by other authors in this issue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Sutherland, K. P. Griffin, Absorption spectrum of DNA for wavelengths greater than 300 nm, Radiat. Res., 1981, 86, 399–409.

    CAS  PubMed  Google Scholar 

  2. R. M. Tyrrell, M. Pidoux, Singlet oxygen involvement in the inactivation of cultured human fibroblasts by UVA (334 nm, 365 nm) and near-visible radiations, Photochem. Photobiol., 1989, 49, 407–412.

    CAS  PubMed  Google Scholar 

  3. S. Basu-Modak, R. M. Tyrrell, Singlet oxygen. A primary effector in the UVA/near visible light induction of the human heme oxygenase gene, Cancer Res., 1993, 53, 4505–4510.

    CAS  PubMed  Google Scholar 

  4. S. Ryter, R. M. Tyrrell, Singlet Molecular Oxygen (1O2): A Possible Effector of Eukaryotic Gene Expression, Free Radical Biol. Med., 1998, 24, 1520–1534.

    CAS  Google Scholar 

  5. F. El Ghissassi, R. Baan, K. Straif, Y. Grosse, B. Secretan, V. Bouvard, L. Benbrahim-Tallaa, N. Guha, C. Freeman, L. Galichet, V. Cogliano, WHO International Agency for Research on Cancer Monograph Working Group. A review of human carcinogens–part D: radiation, Lancet Oncol., 2009, 10, 751–752.

    PubMed  Google Scholar 

  6. A. J. Ridley, J. R. Whiteside, T. J. McMillan, S. L. Allison, Cellular and sub-cellular responses to UVA in relation to carcinogenesis, Int. J. Radiat. Biol., 2009, 85, 177–195.

    CAS  PubMed  Google Scholar 

  7. R. M. Tyrrell, Induction of pyrimidine dimers in bacterial DNA by 365 nm radiation, Photochem. Photobiol., 1973, 17, 69–73.

    CAS  PubMed  Google Scholar 

  8. R. M. Tyrrell, R. B. Webb, Reduced dimer excision in bacteria following near-ultraviolet (365 nm) radiation, Mutat. Res., 1973, 19, 361–364.

    CAS  PubMed  Google Scholar 

  9. R. M. Tyrrell, R. D. Ley, R. B. Webb, Induction of single-strand breaks (alkali-labile bonds) in bacterial and phage DNA by near UV (365 nm) radiation, Photochem. Photobiol., 1974, 20, 395–398.

    CAS  PubMed  Google Scholar 

  10. M. J. Peak, J. G. Peak, Comparison of initial yields of DNA-to-protein cross-links and single-strand breaks induced in cultured human-cells by far- and near-ultraviolet light, bluelight and X-rays, Mutat. Res., 1991, 246, 187–191.

    CAS  PubMed  Google Scholar 

  11. X. S. Zhang, B. S. Rosenstein, Y. Wang, M. Lebwohl, D. M. Mitchell, H. C. Wie, Induction of 8-oxo-7,8-dihydro-2’-deoxyguanosine by ultraviolet radiation in calf thymus DNA and HeLa cells, Photochem. Photobiol., 1997, 65, 119–124.

    CAS  PubMed  Google Scholar 

  12. E. Kvam, R. M. Tyrrell, Induction of oxidative DNA base damage in human skin cells by UV and near visible radiation, Carcinogenesis, 1997, 18, 2379–2384.

    CAS  PubMed  Google Scholar 

  13. T. Douki, D. Perdiz, P. Gróf, Z. Kuluncsics, E. Moustacchi, J. Cadet, E. Sage, Oxidation of guanine in cellular DNA by solar UV radiation: biological role, Photochem. Photobiol., 1999, 70, 184–190.

    CAS  PubMed  Google Scholar 

  14. A. Besaratinia, T. W. Synold, H.-H. Chen, C. Chang, B. Xi, A. Riggs, G. P. Pfeifer, DNA lesions induced by UV A1 and B radiation in human cells: comparative analyses in the overall genome and in the p53 tumor suppressor gene, Proc. Natl. Acad. Sci. U. S. A., 2005, 102, 10058–10063.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. A. Besaratinia, S. I. Kim, G. P. Pfeifer, Rapid repair of UVA-induced oxidized purines and persistence of UVB-induced dipyrimidine lesions determine the mutagenicity of sunlight in mouse cells, FASEB J., 2008, 22, 2379–2392.

    CAS  PubMed  Google Scholar 

  16. A. Javeri, X. X. Huang, F. Bernerd, R. S. Mason, G. M. Halliday, Human 8-oxoguanine-DNA glycosylase 1 protein and gene are expressed more abundantly in the superficial than basal layer of human epidermis, DNA Repair, 2008, 7, 1542–1550.

    CAS  PubMed  Google Scholar 

  17. C. Kielbassa, L. Roza, B. Epe, Wavelength dependence of oxidative DNA damage induced by UV and visible light, Carcinogenesis, 1997, 18, 811–816.

    CAS  PubMed  Google Scholar 

  18. J.-P. Pouget, T. Douki, M.-J. Richard, J. Cadet, DNA damage induced in cells by gamma and UVA radiations as measured by HPLC/GC-MS, HPLC-EC and comet assay, Chem. Res. Toxicol., 2000, 13, 541–549.

    CAS  PubMed  Google Scholar 

  19. T. Douki, A. Reynaud-Angelin, J. Cadet, E. Sage, Bipyrimidine photoproducts rather than oxidative lesions are the main type of DNA damage involved in the genotoxic effect of solar UVA radiation, Biochemistry, 2003, 42, 9221–9226.

    CAS  PubMed  Google Scholar 

  20. J. Cadet, T. Douki, J. L. Ravanat, P. Di Mascio, Sensitized formation of oxidatively generated damage to cellular DNA by UVA radiation, Photochem. Photobiol. Sci., 2009, 8, 903–911.

    CAS  PubMed  Google Scholar 

  21. C. A. Chadwick, C. S. Potten, O. Nikaido, T. Matsunaga, C. Proby, A. R. Young, The detection of cyclobutane thymine dimers,(6–4) photolesions and the Dewar valence photoisomers in sections of UV-irradiated human skin using specific antibodies, and the demonstration of depth penetration effects, J. Photochem. Photobiol., B, 1995, 28, 163–170.

    CAS  PubMed  Google Scholar 

  22. R. Young, C. S. Potten, O. Nikaido, P. G. Parsons, J. Boenders, J. M. Ramsden, C. A. Chadwick, Human melanocytes and keratinocytes exposed to UVB or UVA in vivo show comparable levels of thymine dimers, J. Invest. Dermatol., 1998, 111, 936–940.

    CAS  PubMed  Google Scholar 

  23. D. Perdiz, P. Gróf, M. Mezzina, O. Nikaido, E. Moustacchi, E. Sage, Distribution and repair of bipyrimidine photoproducts in solar UV-irradiated mammalian cells. Possible role of Dewar photoproducts in solar mutagenesis, J. Biol. Chem., 2000, 275, 26732–26742.

    CAS  PubMed  Google Scholar 

  24. R. D. Ley, A. Fourtanier, UVAI-induced edema and pyrimidine dimers in murine skin, Photochem. Photobiol., 2000, 72, 485–487.

    CAS  PubMed  Google Scholar 

  25. P. J. Rochette, J.-P. Therrien, R. Drouin, D. Perdiz, N. Bastien, E. A. Drobetsky, E. Sage, UVA-induced cyclobutane pyrimidine dimers form predominantly at thymine-thymine dipyrimidines and correlate with the mutation spectrum in rodent cells, Nucleic Acids Res., 2003, 31, 2786–2794.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. S. Courdavault, C. Baudouin, M. Charveron, A. Favier, J. Cadet, T. Douki, Larger yield of cyclobutane dimers than 8 oxo-7,8-dihydroguanine in the DNA of UVA-irradiated human skin cells, Mutat. Res., 2004, 556, 135–142.

    CAS  PubMed  Google Scholar 

  27. S. Mouret, C. Baudouin, M. Charveron, A. Favier, J. Cadet, T. Douki, Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 13765–13770.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. J. Cadet, E. Sage, T. Douki, Ultraviolet radiation-mediated damage to cellular DNA, Mutat. Res., 2005, 571, 3–17.

    CAS  PubMed  Google Scholar 

  29. A. P. Schuch, R. da Silva Galhardo, K. M. de Lima-Bessa, N. J. Schuch, C. F. Menck, Development of a DNA-dosimeter system for monitoring the effects of solar-ultraviolet radiation, Photochem. Photobiol. Sci., 2009, 8, 111–120.

    CAS  PubMed  Google Scholar 

  30. P. H. Clingen, C. F. Arlett, L. Roza, T. Mori, O. Nikaido, M. H. Green, Induction of cyclobutane pyrimidine dimers, pyrimidine(6–4)pyrimidone photoproducts, and Dewar valence isomers by natural sunlight in normal human mononuclear cells, Cancer Res., 1995, 55, 2245–2248.

    CAS  PubMed  Google Scholar 

  31. K. S. Wischermann, S. Popp, S. Moshir, K. Scharfetter-Kochanek, M. Wlaschek, F. de Gruijl, W. Hartschuh, R. Greinert, B. Volkmer, A. Faust, A. Rapp, P. Schmezer, P. Boukamp, UVA radiation causes DNA strand breaks, chromosomal aberrations and tumorigenic transformation in HaCaT skin keratinocytes, Oncogene, 2008, 27, 4269–4280.

    CAS  PubMed  Google Scholar 

  32. P. M. Girard, M. Pozzebon, F. Delacôte, T. Douki, V. Smirnova, E. Sage, Inhibition of S-phase progression triggered by UVA-induced ROS does not require a functional DNA damage checkpoint response in mammalian cells, DNA Repair, 2008, 7(9) 1500–1516.

    CAS  PubMed  Google Scholar 

  33. D. Dardalhon, A. Reynaud-Angelin, G. Baldacci, E. Sage, S. Francesconi, Unconventional effects of UVA radiation on cell cycle progression in S. pombe, Cell Cycle, 2008, 7(5) 611–622.

    CAS  PubMed  Google Scholar 

  34. Z. Kuluncsics, D. Perdiz, E. Brulay, B. Muel, E. Sage, Wavelength dependence of ultraviolet-induced DNA damage distribution: involvement of direct or indirect mechanisms and possible artefacts, J. Photochem. Photobiol., B, 1999, 49, 71–80.

    CAS  PubMed  Google Scholar 

  35. Y. Jiang, M. Rabbi, M. Kim, C. Ke, W. Lee, R. L. Clark, P. A. Mieczkowski, P. E. Marszalek, UVA generates pyrimidine dimers in DNA directly, Biophys. J., 2009, 96, 1151–1158.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. S. Mouret, C. Philippe, J. Gracia-Chantegrel, A. Banyasz, S. Karpati, D. Markovitsi, T. Douki, UVA-induced cyclobutane pyrimidine dimers in DNA: a direct photochemical mechanism?, Org. Biomol. Chem., 2010, 8, 1706–1711.

    CAS  PubMed  Google Scholar 

  37. P. M. Girard, S. Francesconi, D. Graindorge, P. J. Rochette, R. Drouin, E. Sage, UVA-induced Damage to DNA and proteins: direct versus indirect photochemical processes, J. Phys.: Conf. Ser., 2011, 261, 012002 10.1088/1742-6596/261/1/012002.

    Google Scholar 

  38. A. Banyasz, I. Vayá, P. Changenet-Barret, T. Gustavsson, T. Douki, D. Markovitsi, Base pairing enhances fluorescence and favors cyclobutane dimer formation induced upon absorption of UVA radiation by DNA, J. Am. Chem. Soc., 2011, 133, 5163–5165.

    CAS  PubMed  Google Scholar 

  39. D. E. Brash, J. A. Rudolph, J. A. Simon, A. Lin, G. J. McKenna, H. P. Baden, A. J. Halperin, J. Ponten, A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma, Proc. Natl. Acad. Sci. U. S. A., 1991, 88, 10124–10128.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. G. P. Pfeifer, Y. H. You, A. Besaratinia, Mutations induced by ultraviolet light, Mutat. Res., 2005, 571, 19–31.

    CAS  PubMed  Google Scholar 

  41. G. Giglia-Mari, A. Sarasin, TP53 mutations in human skin cancers, Hum. Mutat., 2003, 21, 217–228.

    CAS  PubMed  Google Scholar 

  42. C. Greenman, P. Stephens, R. Smith, G. L. Dalgliesh, C. Hunter, G. Bignell, H. Davies, J. Teague, A. Butler, C. Stevens, S. Edkins, S. O’Meara, I. Vastrik, E. E. Schmidt, T. Avis, S. Barthorpe, G. Bhamra, G. Buck, B. Choudhury, J. Clements, J. Cole, E. Dicks, S. Forbes, K. Gray, K. Halliday, R. Harrison, K. Hills, J. Hinton Jenkinson, D. Jones, A. Menzies, T. Mironenko, J. Perry, K. Raine, D. Richardson, R. Shepherd, A. Small, C. Tofts, J. Varian, T. Webb, S. West, S. Widaa, A. Yates, D. P. Cahill, D. N. Louis, P. Goldstraw, A. G. Nicholson, F. Brasseur, L. Looijenga, B. L. Weber, Y. E. Chiew, A. DeFazio, M. F. Greaves, A. R. Green, P. Campbell, E. Birney, D. F. Easton, G. Chenevix-Trench, M. H. Tan, S. K. Khoo, B. T. Teh, S. T. Yuen, S. Y. Leung, R. Wooster, P. A. Futreal, M. R. Stratton, Patterns of somatic mutation in human cancer genomes, Nature, 2007, 446, 153–158.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. E. D. Pleasance, R. K. Cheetham, P. J. Stephens, D. J. McBride, S. J. Humphray, C. D. Greenman, I. Varela, M. L. Lin, G. R Ordonez, G. R. Bignell, K. Ye, J. Alipaz, M. J. Bauer, D. Beare, A. Butler, R. J. Carter, L. Chen, A. J. Cox, S. Edkins, P. I. Kokko-Gonzales, N. A. Gormley, R. J. Grocock, C. D. Haudenschild, M. M. Hims, T. James, M. Jia, Z. Kingsbury, C. Leroy, J. Marshall, A. Menzies, L. J. Mudie, Z. Ning, T. Royce, O. B. Schulz-Trieglaff, A. Spiridou, L. A. Stebbings, L. Szajkowski, J. Teague, D. Williamson, L. Chin, M. T. Ross, P. J. Campbell, D. R. Bentley, P. A. Futreal, M. R. Stratton, A comprehensive catalogue of somatic mutations from a human cancer genome, Nature, 2009, 463, 191–196.

    PubMed  PubMed Central  Google Scholar 

  44. T. M. Rünger, U. P. Kappes, Mechanisms of mutation formation with long-wave ultraviolet light (UVA), Photodermatol., Photoimmunol. Photomed., 2008, 24, 2–10.

    PubMed  Google Scholar 

  45. E. A. Drobetsky, J. Turcotte, A. Chateauneuf, A role for ultraviolet A in solar mutagenesis, Proc. Natl. Acad. Sci. U. S. A., 1995, 92, 2350–2354.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. T. Negishi, C. Nagaoka, H. Hayatsu, K. Suzuki, T. Hara, M. Kubota, M. Watanabe, K. Hieda, Somatic-cell mutation induced by UVA and monochromatic UV radiation in repair-proficient and -deficient Drosophila melanogaster, Photochem. Photobiol., 2001, 73, 493–498.

    CAS  PubMed  Google Scholar 

  47. S. Kozmin, G. Slezak, A. Reynaud-Angelin, C. Elie, Y. de Ryck, S. Boiteux, E. Sage, Ultraviolet A radiation is highly mutagenic in cells that are unable to repair 7,8-dihydro-8-oxoguanine in Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. U. S. A., 2005, 102, 13538–13543.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. S. I. Kim, G. P. Pfeifer, A. Besaratinia, Mutagenicity of ultraviolet A radiation in the lacI transgene in Big Blue mouse embryonic fibroblasts, Mutat. Res., 2007, 617, 71–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. E. Sage, B. Lamolet, E. Brulay, E. Moustacchi, A. Chateauneuf, E. A. Drobetsky, Mutagenic specificity of solar UV light in nucleotide excision repair-deficient rodent cells, Proc. Natl. Acad. Sci. U. S. A., 1996, 93, 176–180.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. C. Robert, B. Muel, A. Benoit, L. Dubertret, A. Sarasin, A. Stary, Cell survival and shuttle vector mutagenesis induced by ultraviolet A and ultraviolet B radiation in a human cell line, J. Invest. Dermatol., 1996, 106, 721–728.

    CAS  PubMed  Google Scholar 

  51. U. P. Kappes, D. Luo, M. Potter, K. Schulmeister, T. M. Rünger, Short- and long-wave UV light (UVB and UVA) induce similar mutations in human skin cells, J. Invest. Dermatol., 2006, 126, 667–675.

    CAS  PubMed  Google Scholar 

  52. S. Shibutani, M. Takeshita, A. P. Grollman, Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG, Nature, 1991, 349, 431–434.

    CAS  PubMed  Google Scholar 

  53. U. P. Kappes, T. M. Rünger, No major role for 7,8-dihydro-8-oxoguanine in ultraviolet light-induced mutagenesis, Radiat. Res., 2005, 164, 440–445.

    CAS  PubMed  Google Scholar 

  54. A. Besaratinia, T. W. Synold, B. Xi, G. P. Pfeifer, G-to-T transversions and small tandem base deletions are the hallmark of mutations induced by ultraviolet A radiation in mammalian cells, Biochemistry, 2004, 43, 8169–8177.

    CAS  PubMed  Google Scholar 

  55. A. Besaratinia, S. I. Kim, S. E. Bates, G. P. Pfeifer, Riboflavin activated by ultraviolet A1 irradiation induces oxidative DNA damage-mediated mutations inhibited by vitamin C, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 5953–5958.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. S. G. Kozmin, Y. I. Pavlov, T. A. Kunkel, E. Sage, Roles of Saccharomyces cerevisiae DNA Polymerases Pol? and Pol? in Response to Irradiation by Simulated Sunlight, Nucleic Acids Res., 2003, 31, 4541–4552.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. A. Biverstål, R. Johansson, D. Jenssen, K. Erixon, Cyclobutane pyrimidine dimers do not fully explain the mutagenicity induced by UVA in Chinese hamster cells, Mutat. Res., 2008, 648, 32–39.

    PubMed  Google Scholar 

  58. J. van Kranen, A. de Laat, J. van de Ven, P. W. Wester, A. de Vries, R. J. Berg, C. F. van Kreijl, F. R. de Gruijl, Low incidence of p53 mutations in UVA (365-nm)-induced skin tumors in hairless mice, Cancer Res., 1997, 57, 1238–1240.

    PubMed  Google Scholar 

  59. H. Ikehata, K. Kawai, J. Komura, K. Sakatsume, L. Wang, M. Imai, S. Higashi, O. Nikaido, K. Yamamoto, K. Hieda, M. Watanabe, H. Kasai, T. Ono, UVA1 genotoxicity is mediated not by oxidative damage but by cyclobutane pyrimidine dimers in normal mouse skin, J. Invest. Dermatol., 2008, 128, 2289–2296.

    CAS  PubMed  Google Scholar 

  60. H. Ikehata, S. Nakamura, T. Asamura, T. Ono, Mutation spectrum in sunlight-exposed mouse skin epidermis: small but appreciable contribution of oxidative stress-mediated mutagenesis, Mutat. Res., 2004, 556, 11–24.

    CAS  PubMed  Google Scholar 

  61. E. Persson, D. W. Edström, H. Bäckvall, J. Lundeberg, F. Pontén, A. M. Ros, C. Williams, The mutagenic effect of ultraviolet-A1 on human skin demonstrated by sequencing the p53 gene in single keratinocytes, Photodermatol., Photoimmunol. Photomed., 2002, 18, 287–293.

    CAS  PubMed  Google Scholar 

  62. X. X. Huang, F. Bernerd, G. M. Halliday, Ultraviolet A within sunlight induces mutations in the epidermal basal layer of engineered human skin, Am. J. Pathol., 2009, 174, 1534–1543.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. N. S. Agar, G. M. Halliday, R. S. Barnetson, H. N. Ananthaswamy, M. Wheeler, A. M. Jones, The basal layer in human squamous tumors harbors more UVA than UVB fingerprint mutations: a role for UVA in human skin carcinogenesis, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 4954–4959.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. E. C. Friedberg, G. C. Walker and W. Siede, DNA repair and mutagenesis, 1995, ASM Press, Washington, DC.

    Google Scholar 

  65. A. A. Schothorst, L. M. Evers, K. C. Noz, R. Filon, A. A. van Zeeland, Pyrimidine dimer induction and repair in cultured human skin keratinocytes or melanocytes after irradiation with monochromatic ultraviolet radiation, J. Invest. Dermatol., 1991, 96, 916–920.

    CAS  PubMed  Google Scholar 

  66. S. Gaddameedhi, M. G. Kemp, J. T. Reardon, J. M. Shields, S. L. Smith-Roe, W. K. Kaufmann, A. Sancar, Similar nucleotide excision repair capacity in melanocytes and melanoma cells, Cancer Res., 2010, 70, 4922–4930.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. H. T. Wang, B. Choi, M. S. Tang, Melanocytes are deficient in repair of oxidative DNA damage and UV-induced photoproducts, Proc. Natl. Acad. Sci. U. S. A., 2010, 107(27) 12180–12185.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. J. Dahle, E. Kvam, Induction of delayed mutations and chromosomal instability in fibroblasts after UVA-, UVB-, and X-radiation, Cancer Res., 2003, 63, 1464–1469.

    CAS  PubMed  Google Scholar 

  69. J. Dahle, P. Noordhuis, T. Stokke, D. H. Svendsrud, E. Kvam, Multiplex polymerase chain reaction analysis of UV-A- and UV-B-induced delayed and early mutations in V79 Chinese hamster cells, Photochem. Photobiol., 2005, 81, 114–119.

    CAS  PubMed  Google Scholar 

  70. R. P. Phillipson, S. E. Tobi, J. A. Morris, T. J. McMillan, UV-A induces persistent genomic instability in human keratinocytes through an oxidative stress mechanism, Free Radical Biol. Med., 2002, 32, 474–480.

    CAS  Google Scholar 

  71. S. Oikawa, S. Tada-Oikawa, S. Kawanishi, Site-specific DNA damage at the GGG sequence by UVA involves acceleration of telomer shortening, Biochemistry, 2001, 40, 4763–4768.

    CAS  PubMed  Google Scholar 

  72. M. Buckingham, A. J. Klingelhutz, The role of telomeres in the ageing of human skin, Exp. Dermatol., 2011, 20(4) 297–302.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. J. Ye, Y. Wu, E. Gilson, Dynamics of telomeric chromatin at the crossroads of aging and cancer, Essays Biochem., 2010, 48(1) 147–164.

    CAS  PubMed  Google Scholar 

  74. P. J. Rochette, D. E. Brash, Human telomeres are hypersensitive to UV-induced DNA damage and refractory to repair, PLoS Genet., 2010, 6(4) e1000926.

    PubMed  PubMed Central  Google Scholar 

  75. P. Grof, G. Ronto, E. Sage, A computational study of physical and biological characterization of common UV sources and filters, and their relevance for substituting sunlight, J. Photochem. Photobiol., B, 2002, 68, 53–59.

    CAS  PubMed  Google Scholar 

  76. G. M. Halliday, N. S. Agar, R. S. Barnetson, H. N. Ananthaswamy, A. M. Jones, UV-A fingerprint mutations in human skin cancer, Photochem. Photobiol., 2005, 81, 3–8.

    CAS  PubMed  Google Scholar 

  77. A. de Laat, J. C. van der Leun, F. R. de Gruijl, Carcinogenesis induced by UVA (365-nm) radiation: the dose-time dependence of tumor formation in hairless mice, Carcinogenesis, 1997, 18, 1013–1020.

    PubMed  Google Scholar 

  78. S. Q. Wang, R. B. Setlow, M. Berwick, D. Polsky, A. A. Marghooh, A. W. Kopf, R. S. Bart, Ultraviolet A and melanoma: a review, J. Am. Acad. Dermatol., 2001, 44, 837–846.

    CAS  PubMed  Google Scholar 

  79. C. Jhappan, F. P. Noonan, G. Merlino, Ultraviolet radiation and cutaneous malignant melanoma, Oncogene, 2003, 22, 3099–3112.

    CAS  PubMed  Google Scholar 

  80. D. C. Bennett, Ultraviolet wavebands and melanoma initiation, Pigm. Cell Melanoma Res., 2008, 21, 520–524.

    CAS  Google Scholar 

  81. R. B. Setlow, E. Grist, K. Thompson, A. D. Woodhead, Wavelengths effective in induction of malignant melanoma, Proc. Natl. Acad. Sci. U. S. A., 1993, 90, 6666–6670.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. L. Mitchell, A. A. Fernandez, R. S. Nairn, R. Garcia, L. Paniker, D. Trono, H. D. Thames, I. Gimenez-Conti, Ultraviolet A does not induce melanomas in a Xiphophorus hybrid sh model, Proc. Natl. Acad. Sci. U. S. A., 2010, 107(20) 9329–9334.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. R. D. Ley, Ultraviolet radiation A-induced precursors of cutaneous melanoma in Monodelphis domestica, Cancer Res., 1997, 57(17) 3682–3684.

    CAS  PubMed  Google Scholar 

  84. C. De Fabo, F. P. Noonan, T. Fears, G. Merlino, Ultraviolet B but not ultraviolet Aradiation initiates melanoma, Cancer Res., 2004, 64, 6372–6376.

    PubMed  Google Scholar 

  85. P. Autier, J.-F. Doré, A. M. M. Eggermont, J. W. Coebergh, Epidemiological evidence that UVA radiation is involved in the genesis of cutaneous melanoma, Curr. Opin. Oncol., 2011, 23, 189–196.

    PubMed  Google Scholar 

  86. M. R. Chedekel, S. K. Smith, P. W. Post, A. Pokora, D. L. Vessell, Photodestruction of pheomelanin: role of oxygen, Proc. Natl. Acad. Sci. U. S. A., 1978, 75, 5395–5399.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. N. Kollias, R. M. Sayre, L. Zeise, M. R. Chedekel, Photoprotection by melanin, J. Photochem. Photobiol., B, 1991, 9, 135–160.

    CAS  PubMed  Google Scholar 

  88. S. Takeuchi, W. Zhang, K. Wakamatsu, S. Ito, V. Hearing, K. H. Kraemer, D. E. Brash, Melanin acts as a potent UVB photosensitizer to cause an atypical mode of cell death in murine skin, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 15076–15081.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. E. Kvam, R. M. Tyrrell, The role of melanin in the induction of oxidative DNA base damage by ultraviolet A irradiation of DNA or melanoma cells, J. Invest. Dermatol., 1999, 113(2) 209–203.

    CAS  PubMed  Google Scholar 

  90. M. Berneburg, J. Krutmann, Photoageing-associated large-scale deletions of mitochondrial DNA, Methods Enzymol., 2000, 319(34) 366–376.

    CAS  PubMed  Google Scholar 

  91. M. A. Birch-Machin, H. Swalwell, How mitochondria record the effects of UVexposure and oxidative stress using human skin as a model tissue, Mutagenesis, 2009, 25(2) 101–107.

    PubMed  Google Scholar 

  92. M. Berneburg, S. Grether-Beck, V. Kürten, T. Ruzicka, K. Briviba, H. Sies, J. Krutmann, Singlet oxygen mediates the UVA-induced generation of the photoaging-associated mitochondrial common deletion, J. Biol. Chem., 1999, 274(22) 15345–1549.

    CAS  PubMed  Google Scholar 

  93. M. Berneburg, T. Gremmel, V. Kürten, P. Schroeder, I. Hertel, A. von Mikecz, S. Wild, M. Chen, L. Declercq, M. Matsui, T. Ruzicka, J. Krutmann, Creatine supplementation normalizes mutagenesis of mitochondrial DNA as well as functional consequences, J. Invest. Dermatol., 2005, 125(2) 213–220.

    CAS  PubMed  Google Scholar 

  94. D. Mitchell, A. Fernandez, The photobiology of melanocytes modulates the impact of UVA on sunlight-induced melanoma, Photochem. Photobiol. Sci., 2011, 10 (10.1039/c1pp05146f.

  95. J.-F. Doré, M.-C. Chignol, Tanning salons and skin cancer, Photochem. Photobiol. Sci., 2011, 10, DOI: 10.1039/c1pp05186e.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evelyne Sage.

Additional information

Contribution to the themed issue on the biology of UVA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sage, E., Girard, PM. & Francesconi, S. Unravelling UVA-induced mutagenesis. Photochem Photobiol Sci 11, 74–80 (2012). https://doi.org/10.1039/c1pp05219e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c1pp05219e

Navigation