Skip to main content
Log in

The photobiology of melanocytes modulates the impact of UVA on sunlight-induced melanoma

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Ultraviolet radiation is responsible for melanoma. In this review, we address the role of the different UV spectra in melanoma. The data suggest that only UVB is capable of initiating melanoma, and that both UVA and UVB are involved in the progression of the disease. The etiology of sunlight-induced melanoma may be different for chronically-exposed tumors and for those located on body surfaces with considerably less exposure. Solar signature mutations are most likely associated with the progression of chronically-exposed tumors. The unique relationship between UVA and melanocytes, and the role of melanin in photocarcinogenesis is discussed. The current state of knowledge strongly indicates that UVA, regardless of its source, is involved in melanoma and should be avoided to deter progression of incipient tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. M. Lucas, A. McMichael, W. Smith and B. K. Armstrong, Solar Ultraviolet Radiation. Global burden of disease from solar ultraviolet radiation, in Environmental Burden of Disease, series no. 13, ed. A. Prüss-Üstün, H. Zeeb, C. Mathers and M. H. Repacholi, World Health Organization, Geneva, 2006, pp. 1–258.

    Google Scholar 

  2. M. B. Lens, M. Dawes, Global perspectives of contemporary epidemiological trends of cutaneous malignant melanoma, Br. J. Dermatol., 2004, 150, 179–185.

    CAS  PubMed  Google Scholar 

  3. U. Leiter and C. Garbe, Epidemiology of melanoma and nonmelanoma skin cancer–the role of sunlight, in Sunlight Vitamin D and Skin Cancer: Advances in Experimental Medicine and Biology, vol. 624, ed. J. Reichrath, Plenum Press, New York, 2008, pp. 89–103.

    Google Scholar 

  4. R. M. Mackie, A. Hauschild, A. M. M. Eggermont, Epidemiology of invasive cutaneous melanoma, Ann. Oncol., 2009, 20, vi1–vi7.

    PubMed  PubMed Central  Google Scholar 

  5. P. Autier, J. F. Doré, S. Négrier, D. Liénard, R. Panizzon, F. J. Lejeune, D. Guggisberg, A. M. M. Eggermont, Sunscreen use and duration of sun exposure: a double-blind, randomized trial, J. Natl. Cancer Inst., 1999, 91, 1304–9.

    CAS  PubMed  Google Scholar 

  6. S. G. Coelho, V. J. Hearing, UVA tanning is involved in the increased incidence of skin cancers in fair-skinned young women, Pigm. Cell Melanoma Res., 2010, 23, 57–63.

    Google Scholar 

  7. C. Héry, L. Tryggvadóttir, T. Sigurdsson, E. Ólafsdóttir, B. Sigurgeirsson, J. G. Jonasson, J. H. Olafsson, M. Boniol, G. B. Byrnes, J.-F. Doré, P. Autier, A melanoma epidemic in Iceland: possible influence of sunbed use, Am. J. Epidemiol., 2010, 172, 762–767.

    PubMed  Google Scholar 

  8. M. Berwick, Invited commentary: a sunbed epidemic?, Am. J. Epidemiol., 2010, 172, 768–770.

    PubMed  PubMed Central  Google Scholar 

  9. P. Autier, J.-F. Doré, A. M. M. Eggermont, J. W. Coebergh, Epidemiological evidence that UVA radiation is involved in the genesis of cutaneous melanoma, Curr. Opin. Oncol., 2011, 23, 189–196.

    PubMed  Google Scholar 

  10. D. E. Godar, R. J. Landry, A. D. Lucas, Increased UVA exposures and decreased cutaneous Vitamin D3 levels may be responsible for the increasing incidence of melanoma, Med. Hypotheses, 2009, 72, 434–443.

    CAS  PubMed  Google Scholar 

  11. R. B. Setlow, E. Grist, K. Thompson, A. D. Woodhead, Wavelengths effective in induction of malignant melanoma, Proc. Natl. Acad. Sci. U. S. A., 1993, 90, 6666–6670.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. D. L. Mitchell, A. A. Fernandez, R. S. Nairn, R. Garcia, L. Paniker, D. Trono, H. D. Thames, I. Gimenez-Conti, Ultraviolet A does not induce melanomas in a Xiphophorus hybrid fish model, Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 9329–9334.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. A. de Laat, J. C. van der Leun, F. R. de Gruijl, Carcinogenesis induced by UVA (365-nm) radiation: the dose-time dependence of tumor formation in hairless mice, Carcinogenesis, 1997, 18, 1013–1020.

    PubMed  Google Scholar 

  14. E. S. Robinson, R. H. Hill Jr, M. L. Kripke, R. B. Setlow, The Monodelphis melanoma model: initial report on large ultraviolet A exposures of suckling young, Photochem. Photobiol., 2000, 71, 743–746.

    CAS  PubMed  Google Scholar 

  15. E. C. De Fabo, F. P. Noonan, T. Fears, G. Merlino, Ultraviolet B but not ultraviolet A radiation initiates melanoma, Cancer Res., 2004, 64, 6372–6376.

    PubMed  Google Scholar 

  16. E. S. Robinson, J. L. VandeBerg, G. B. Hubbard, T. P. Dooley, Malignant melanoma in ultraviolet irradiated laboratory opossums: initiation in suckling young, metastasis in adults, and xenograft behavior in nude mice, Cancer Res., 1994, 54, 5986–5991.

    CAS  PubMed  Google Scholar 

  17. R. D. Ley, Dose response for ultraviolet radiation A-induced focal melanocytic hyperplasia and nonmelanoma skin tumors in Monodelphis domestica, Photochem. Photobiol., 2001, 73, 20–23.

    CAS  PubMed  Google Scholar 

  18. A. van Schanke, M. J. Jongsma, R. Bisschop, G. M. van Venrooij, H. Rebel, F. R. de Gruijl, Single UVB overexposure stimulates melanocyte proliferation in murine skin, in contrast to fractionated or UVA-1 exposure, J. Invest. Dermatol., 2005, 124, 241–247.

    PubMed  Google Scholar 

  19. F. Haluska, T. Pemberton, N. Ibrahim, K. Kalinsky, The RTK/RAS/BRAF/PI3K pathways in melanoma: biology, small molecule inhibitors, and potential applications, Semin. Oncol., 2007, 34, 546–554.

    CAS  PubMed  Google Scholar 

  20. G. J. Walker, N. K. Hayward, Pathways to melanoma development: lessons from the mouse, J. Invest. Dermatol., 2002, 119, 783–792.

    CAS  PubMed  Google Scholar 

  21. S. Meierjohann, M. Schartl, From Mendelian to molecular genetics: the Xiphophorus melanoma model, Trends Genet., 2006, 22, 654–661.

    CAS  PubMed  Google Scholar 

  22. T. Douki, A. Reynaud-Angelin, J. Cadet, E. Sage, Bipyrimidine photoproducts rather than oxidative lesions are the main type of DNA damage involved in the genotoxic effect of solar UVA radiation, Biochemistry, 2003, 42, 9221–9226.

    CAS  PubMed  Google Scholar 

  23. S. Courdavault, C. Baudouin, M. Charveron, B. Canguilhem, A. Favier, J. Cadet, T. Douki, Repair of the three main types of bipyrimidine DNA photoproducts in human keratinocytes exposed to UVB and UVA radiations, DNA Repair, 2005, 4, 836–844.

    CAS  PubMed  Google Scholar 

  24. S. Mouret, M. Charveron, A. Favier, J. Cadet, T. Douki, Differential repair of UVB-induced cyclobutane pyrimidine dimers in cultured human skin cells and whole human skin, DNA Repair, 2008, 7, 704–712.

    CAS  PubMed  Google Scholar 

  25. S. Mouret, C. Philippe, J. Gracia-Chantegrel, A. Banyasz, S. Karpati, D. Markovitsi, T. Douki, UVA-induced cyclobutane pyrimidine dimers in DNA: a direct photochemical mechanism?, Org. Biomol. Chem., 2010, 8, 1706–1711.

    CAS  PubMed  Google Scholar 

  26. J.-L. Ravanat, P. Di Mascio, G. R. Martinez, M. H. G. Medeiros, J. Cadet, Singlet oxygen induces oxidation of cellular DNA, J. Biol. Chem., 2000, 275, 40601–40604.

    CAS  PubMed  Google Scholar 

  27. S. Kawanishi, Y. Hiraku, S. Oikawa, Mechanism of guanine-specific DNA damage by oxidative stress and its role in carcinogenesis and aging, Mutat. Res. Rev. Mutat. Res., 2001, 488, 65–76.

    CAS  Google Scholar 

  28. J. Cadet, E. Sage, T. Douki, Ultraviolet radiation-mediated damage to cellular DNA, Mutat. Res., Fundam. Mol. Mech. Mutagen., 2005, 571, 3–17.

    CAS  Google Scholar 

  29. J. Cadet, and P. Vigny, The photochemistry of nucleic acids, in Bioorganic Photochemistry, vol. 1, ed. H. Morrison, Wiley, New York, 1990, pp. 1–272.

    Google Scholar 

  30. C. Kielbassa, L. Roza, B. Epe, Wavelength dependence of oxidative DNA damage induced by UV and visible light, Carcinogenesis, 1997, 18, 811–816.

    CAS  PubMed  Google Scholar 

  31. A. Besaratinia, S.-I. Kim, G. P. Pfeifer, Rapid repair of UVA-induced oxidized purines and persistence of UVB-induced dipyrimidine lesions determine the mutagenicity of sunlight in mouse cells, J. Fed. Am. Soc. Environ. Biol., 2008, 22, 2379–2392.

    CAS  Google Scholar 

  32. T. M. Rünger, U. P. Kappes, Mechanisms of mutation formation with long-wave ultraviolet light (UVA), Photodermatol., Photoimmunol. Photomed., 2008, 24, 2–10.

    PubMed  Google Scholar 

  33. C. I. Kowalczuk, M. C. Priestner, A. J. Pearson, R. D. Saunders, S. D. Bouffler, Wavelength dependence of cellular responses in human melanocytes and melanoma cells following exposure to ultraviolet radiation, Int. J. Radiat. Biol., 2006, 82, 781–792.

    CAS  PubMed  Google Scholar 

  34. P. J. Rochette, J.-P. Therrien, R. Drouin, D. Perdiz, N. Bastien, E. A. Drobetsky, E. Sage, UVA-induced cyclobutane pyrimidine dimers form predominantly at thymine-thymine dipyrimidines and correlate with the mutation spectrum in rodent cells, Nucleic Acids Res., 2003, 31, 2786–2794.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. U. P. Kappes, D. Luo, M. Potter, K. Schulmeister, T. M. Rünger, Short- and long-wave UV light (UVB and UVA) induce similar mutations in human skin cells, J. Invest. Dermatol., 2006, 126, 667–675.

    CAS  PubMed  Google Scholar 

  36. A. Ziegler, D. J. Leffell, S. Kunala, H. W. Sharma, M. Gailani, J. A. Simon, A. J. Halperin, H. P. Baden, P. E. Shapiro, A. E. Bale, Mutation hotspots due to sunlight in the p53 gene of nonmelanoma skin cancers, Proc. Natl. Acad. Sci. U. S. A., 1993, 90, 4216–4220.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. A. Sarasin, The molecular pathways of ultraviolet-induced carcinogenesis, Mutat. Res., Fundam. Mol. Mech. Mutagen., 1999, 428, 5–10.

    CAS  Google Scholar 

  38. H. Ikehata, K. Kawai, J.-I. Komura, K. Sakatsume, L. Wang, M. Imai, S. Higashi, O. Nikaido, K. Yamamoto, K. Hieda, M. Watanabe, H. Kasai, T. Ono, UVA1 genotoxicity is mediated not by oxidative damage but by cyclobutane pyrimidine dimers in normal mouse skin, J. Invest. Dermatol., 2008, 128, 2289–2296.

    CAS  PubMed  Google Scholar 

  39. T. M. Rünger, C?T transition mutations are not solely UVB-signature mutations, because they are also generated by UVA, J. Invest. Dermatol., 2008, 128, 2138–2140.

    PubMed  Google Scholar 

  40. J.-P. Pouget, T. Douki, M.-J. Richard, J. Cadet, DNA damage induced in cells by ? and UVA radiation as measured by HPLC/GC-MS and HPLC-EC and comet assay, Chem. Res. Toxicol., 2000, 13, 541–549.

    CAS  PubMed  Google Scholar 

  41. N. E. Thomas, BRAF somatic mutations in malignant melanoma and melanocytic naevi, Melanoma Res., 2006, 16, 97–103.

    CAS  PubMed  Google Scholar 

  42. H. Davies, G. R. Bignell, C. Cox, P. Stephens, S. Edkins, S. Clegg, J. Teague, H. Woffendin, M. J. Garnett, W. Bottomley, N. Davis, E. Dicks, R. Ewing, Y. Floyd, K. Gray, S. Hall, R. Hawes, J. Hughes, V. Kosmidou, A. Menzies, C. Mould, A. Parker, C. Stevens, S. Watt, S. Hooper, R. Wilson, H. Jayatilake, B. A. Gusterson, C. Cooper, J. Shipley, D. Hargrave, K. Pritchard-Jones, N. Maitland, G. Chenevix-Trench, G. J. Riggins, D. D. Bigner, G. Palmieri, A. Cossu, A. Flanagan, A. Nicholson, J. W. C. Ho, S. Y. Leung, S. T. Yuen, B. L. Weber, H. F. Seigler, T. L. Darrow, H. Paterson, R. Marais, C. J. Marshall, R. Wooster, M. R. Stratton, P. A. Futreal, Mutations of the BRAF gene in human cancer, Nature, 2002, 417, 949–954.

    CAS  PubMed  Google Scholar 

  43. J. Dong, R. G. Phelps, R. Qiao, S. Yao, O. Benard, Z. Ronai, S. A. Aaronson, BRAF oncogenic mutations correlate with progression rather than initiation of human melanoma, Cancer Res., 2003, 63, 3883–3885.

    CAS  PubMed  Google Scholar 

  44. M. Meinhardt, R. Krebs, A. Anders, U. Heinrich, H. Tronnier, Wavelength-dependent penetration depths of ultraviolet radiation in human skin, J. Biomed. Opt., 2008, 13, 044030.

    PubMed  Google Scholar 

  45. S. R. Wood, M. Berwick, R. D. Ley, R. B. Walter, R. B. Setlow, G. S. Timmins, UV causation of melanoma in Xiphophorus is dominated by melanin photosensitized oxidant production, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 4111–4115.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. H.-T. Wang, B. Choi, M.-S. Tang, Melanocytes are deficient in repair of oxidative DNA damage and UV-induced photoproducts, Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 12180–12185.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. T. M. Rünger, Is UV-induced mutation formation in melanocytes different from other skin cells?, Pigm. Cell Melanoma Res., 2011, 24, 10–12.

    Google Scholar 

  48. H. Z. Hill, W. Li, P. Xin, D. L. Mitchell, Melanin: a two edged sword?, Pigm. Cell Res., 1997, 10, 158–161.

    CAS  Google Scholar 

  49. F. Urbach, The cumulative effects of ultraviolet radiation and skin photocarcinogenesis, in Photodermatology ed. J. L. M. Hawk, Arnold, London, 1999, pp. 89–111.

    Google Scholar 

  50. A. Hennessy, C. Oh, B. Diffey, K. Wakamatsu, S. Ito, J. Rees, Eumelanin and pheomelanin concentrations in human epidermis before and after UVB irradiation, Pigm. Cell Res., 2005, 18, 220–223.

    CAS  Google Scholar 

  51. R. Wolber, K. Schlenz, K. Wakamatsu, C. Smuda, Y. Nakanishi, V. J. Hearing, S. Ito, Pigmentation effects of solar-simulated radiation as compared with UVA and UVB radiation, Pigm. Cell Melanoma Res., 2008, 21, 487–491.

    Google Scholar 

  52. Y. Miyamura, S. G. Coelho, K. Schlenz, J. Batzer, C. Smuda, W. Choi, M. Brenner, T. Passeron, G. Zhang, L. Kolbe, R. Wolber, V. J. Hearing, The deceptive nature of UVA tanning versus the modest protective effects of UVB tanning on human skin, Pigm. Cell Melanoma Res., 2011, 24, 136–147.

    Google Scholar 

  53. D. L. Mitchell, A. A. Fernandez, Different types of DNA damage play different roles in the etiology of sunlight-induced melanoma, Pigm. Cell Melanoma Res., 2011, 24, 119–124.

    CAS  Google Scholar 

  54. D. L. Mitchell, L. Paniker, T. Douki, DNA damage, repair and photoadaptation in a Xiphophorus fish hybrid, Photochem. Photobiol., 2009, 85, 1384–1390.

    CAS  PubMed  Google Scholar 

  55. E. D. Pleasance, R. Keira Cheetham, P. J. Stephens, D. J. McBride, S. J. Humphray, C. D. Greenman, I. Varela, M.-L. Lin, G. R. Ordóñez, G. R. Bignell, K. Ye, J. Alipaz, M. J. Bauer, D. Beare, A. Butler, R. J. Carter, L. Chen, A. J. Cox, S. Edkins, P. I. Kokko-Gonzales, N. A. Gormley, R. J. Grocock, C. D. Haudenschild, M. M. Hims, T. James, M. Jia, Z. Kingsbury, C. Leroy, J. Marshall, A. Menzies, L. J. Mudie, Z. Ning, T. Royce, O. B. Schulz-Trieglaff, A. Spiridou, L. A. Stebbings, L. Szajkowski, J. Teague, D. Williamson, L. Chin, M. T. Ross, P. J. Campbell, D. R. Bentley, P. A. Futreal, M. R. Stratton, A comprehensive catalogue of somatic mutations from a human cancer genome, Nature, 2010, 463, 191–196.

    CAS  PubMed  Google Scholar 

  56. H. Ikehata, T. Ono, The mechanisms of UV mutagenesis, J. Radiat. Res., 2011, 52, 115–125.

    CAS  PubMed  Google Scholar 

  57. S. Tommasi, M. F. Denissenko, G. P. Pfeifer, Sunlight induces pyrimidine dimers preferentially at 5-methylcytosine bases, Cancer Res., 1997, 57, 4727–4730.

    CAS  PubMed  Google Scholar 

  58. D. L. Mitchell, Effects of cytosine methylation on pyrimidine dimer formation in DNA, Photochem. Photobiol., 2000, 71, 162–165.

    CAS  PubMed  Google Scholar 

  59. V. J. Cannistraro, J.-S. A. Taylor, Methyl CpG binding protein 2 (MeCP2) enhances photodimer formation at methyl-CpG sites but suppresses dimer deamination, Nucleic Acids Res., 2010, 38, 6943–6955.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. A. J. Ridley, J. R. Whiteside, T. J. McMillan, S. L. Allinson, Cellular and sub-cellular responses to UVA in relation to carcinogenesis, Int. J. Radiat. Biol., 2009, 85, 177–195.

    CAS  PubMed  Google Scholar 

  61. T. J. McMillan, E. Leatherman, A. Ridley, J. Shorrocks, S. E. Tobi, J. R. Whiteside, Cellular effects of long wavelength UV light (UVA) in mammalian cells, J. Pharm. Pharmacol., 2010, 60, 969–976.

    Google Scholar 

  62. Y. Ibuki, M. Allanson, K. M. Dixon, V. E. Reeve, Radiation sources providing increased UVA/UVB ratios attenuate the apoptotic effects of the UVB waveband UVA-dose-dependently in hairless mouse skin, J. Invest. Dermatol., 2007, 127, 2236–2244.

    CAS  PubMed  Google Scholar 

  63. P. K. Wäster, K. M. Öllinger, Redox-dependent translocation of p53 to mitochondria or nucleus in human melanocytes after UVA- and UVB-induced apoptosis, J. Invest. Dermatol., 2009, 129, 1769–1781.

    PubMed  Google Scholar 

  64. D. L. Damian, R. S. Barnetson, G. M Halliday, Effects of low-dose ultraviolet radiation on in vivo human cutaneous recall responses, Australas. J. Dermatol., 2001, 42, 161–167.

    CAS  PubMed  Google Scholar 

  65. T. S. C. Poon, R. S. C. Barnetson, G. M. Halliday, Sunlight-induced immunosuppression in humans is initially because of UVB, then UVA, followed by interactive effects, J. Invest. Dermatol., 2005, 125, 840–846.

    CAS  PubMed  Google Scholar 

  66. G. M. Halliday, S. Rana, Waveband and dose dependency of sunlight-induced immunomodulation and cellular changes, Photochem. Photobiol., 2008, 84, 35–46.

    CAS  PubMed  Google Scholar 

  67. R. Pastila, D. Leszczynski, Ultraviolet A exposure alters adhesive properties of mouse melanoma cells, Photodermatol., Photoimmunol. Photomed., 2005, 21, 234–241.

    CAS  PubMed  Google Scholar 

  68. R. Pastila, D. Leszczynski, Ultraviolet A exposure might increase metastasis of mouse melanoma: a pilot study, Photodermatol., Photoimmunol. Photomed., 2005, 21, 183–90.

    PubMed  Google Scholar 

  69. M. Brenner, K. Degitz, R. Besch, C. Berking, Differential expression of melanoma-associated growth factors in keratinocytes and fibroblasts by ultraviolet A and ultraviolet B radiation, Br. J. Dermatol., 2005, 153, 733–739.

    CAS  PubMed  Google Scholar 

  70. G. Walker, Cutaneous melanoma: how does ultraviolet light contribute to melanocyte transformation?, Future Oncol., 2008, 4, 841–856.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Mitchell.

Additional information

Contribution to the themed issue on the biology of UVA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitchell, D., Fernandez, A. The photobiology of melanocytes modulates the impact of UVA on sunlight-induced melanoma. Photochem Photobiol Sci 11, 69–73 (2012). https://doi.org/10.1039/c1pp05146f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c1pp05146f

Navigation