Skip to main content
Log in

Modulation of the spectroscopic property of Bodipy derivates through tuning the molecular configuration

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A series of six Bodipy derivatives, namely 4,4-difluoro-8-(4-amidophenyl)-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene (1), 4,4-difluoro-8-(4-methylphenyl)-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene (2), 4,4-difluoro-8-(4-nitrylphenyl)-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene (3), 4,4-difluoro-8-(4-amidophenyl)-3,5-dimethyl-4-bora-3a,4a-diaza-s-indacene (4), 4,4-difluoro-8-(4-methylphenyl)-3,5-dimethyl-4-bora-3a,4a-diaza-s-indacene (5), and 4,4-difluoro-8-(4-nitrylphenyl)-3,5-dimethyl-4-bora-3a,4a-diaza-s-indacene (6) were structurally characterized by single crystal X-ray diffraction analysis. Two methyl substituents attached at C-1 and C-7 positions of boron-dipyrromethene (Bodipy) moiety in compounds 1–3 were revealed to prevent the free rotation of the benzene moiety, resulting in a molecular configuration with an almost orthogonal dihedral angle between the Bodipy and benzene moieties with the dihedral angle in the range of 81.14–88.56°. This is obviously different from that for 4–6 with a free-rotating benzene moiety relative to the Bodipy core due to the lack of two methyl substituents in the latter series of compounds, leading to an enhanced interaction between the Bodipy and benzene moieties for 4–6 in comparison with 1–3. The resulting larger HOMO–LUMO gap for 1–3 than 4–6 results in a blue-shifted absorption band for 1–3 relative to that for 4–6. Comparative studies over their fluorescence properties also disclose the blue-shifted fluorescence emission band and corresponding higher fluorescence quantum yield for 1–3 relative to those of 4–6, revealing the effect of molecular configuration on the spectroscopic properties of Bodipy derivatives. Comparison of the redox behaviors of these two series of Bodipy compounds provides additional support for this point. In addition, the electron-donating/withdrawing property of the para substituent of the benzene moiety was shown to exhibit a slight influence on the electronic absorption and fluorescence emission properties of the Bodipy compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Treibs and F. H. Kreuzer, Difluorboryl-komplexe von di- and tripyrrylmethenen, Justus Liebigs Ann. Chem., 1968, 718, 208–223.

    Article  CAS  Google Scholar 

  2. J. Karolin, L. B. A. Johansson, L. Strandberg and T. Ny, Fluorescence and absorption spectroscopic properties of dipyrrometheneboron difluoride (BODIPY) derivatives in liquids, lipid membranes, and proteins, J. Am. Chem. Soc., 1994, 116, 7801–7803

    Article  CAS  Google Scholar 

  3. E. J. Merino and K. M. Weeks, Facile conversion of aptamers into sensors using a 2′-ribose-linked fluorophore, J. Am. Chem. Soc., 2005, 127, 12766–12767

    Article  CAS  Google Scholar 

  4. B. R. Sculimbrene and B. Imperiali, Lanthanide-binding tags as luminescent probes for studying protein interactions, J. Am. Chem. Soc., 2006, 128, 7346–7352.

    Article  CAS  Google Scholar 

  5. J. L. Bricks, A. Kovalchuk, C. Trieflinger, M. Nofz, M. Buschel, A. I. Tolmachev, J. Daub and K. Rurack, On the development of sensor molecules that display FeIII -amplified fluorescence, J. Am. Chem. Soc., 2005, 127, 13522–13529

    Article  CAS  Google Scholar 

  6. D. W. Domaille, L. Zeng and C. J. Chang, Visualizing ascorbate-triggered release of labile copper within living cells using a ratiometric fluorescent sensor, J. Am. Chem. Soc., 2010, 132, 1194–1195

    Article  CAS  Google Scholar 

  7. K. Rurack, M. Kollmannsberger and J. Daub, Molecular switching in the near infrared (NIR) with a functionalized boron-dipyrromethene dye, Angew. Chem., Int. Ed., 2001, 40, 385–387.

    Article  CAS  Google Scholar 

  8. K. Rurack, M. Kollmannsberger, U. Resch-Genger and J. Daub, A selective and sensitive fluoroionophore for HgII, AgI, and CuII with virtually decoupled fluorophore and receptor units, J. Am. Chem. Soc., 2000, 122, 968–969

    Article  CAS  Google Scholar 

  9. Y. Gabe, Y. Urano, K. Kikuchi, H. Kojima and T. Nagano, Highly sensitive fluorescence probes for nitric oxide based on boron dipyrromethene chromophore-rational design of potentially useful bioimaging fluorescence probe, J. Am. Chem. Soc., 2004, 126, 3357–3367

    Article  CAS  Google Scholar 

  10. K. Yamada, Y. Nomura, D. Citterio, N. Iwasawa and K. Suzuki, Highly sodium-selective fluoroionophore based on conformational restriction of oligoethyleneglycol-bridged biaryl Boron-dipyrromethene, J. Am. Chem. Soc., 2005, 127, 6956–6957

    Article  CAS  Google Scholar 

  11. M. Baruah, W. Qin, R. A. L. Vallee, D. Beljonne, T. Rohand, W. Dehaen and N. Boens, A highly potassium-selective ratiometric fluorescent indicator based on BODIPY azacrown ether excitable with visible light, Org. Lett., 2005, 7, 4377–4379.

    Article  CAS  Google Scholar 

  12. T. L. Arbeloa, F. L. Arbeloa, I. L. Arbeloa, I. Garcia-Moreno, A. Costela, R. Sastre and F. Amat-Guerri, Correlations between photophysics and lasing properties of dipyrromethene-BF2 dyes in solution, Chem. Phys. Lett., 1999, 299, 315–321.

    Article  CAS  Google Scholar 

  13. G. Ulrich, R. Ziessel and A. Harriman, The chemistry of fluorescent bodipy dyes: versatility unsurpassed, Angew. Chem., Int. Ed., 2008, 47, 1184–1201

    Article  CAS  Google Scholar 

  14. J. Q. Feng, B. L. Liang, D. L. Wang, L. Xue and X. Y. Li, Novel fluorescent dyes with fused perylene tetracarboxlic diimide and BODIPY analogue structures, Org. Lett., 2008, 10, 4437–4440

    Article  CAS  Google Scholar 

  15. J. Wang and X. Qian, Two regioisomeric and exclusively selective Hg(II) sensor molecules composed of a naphthalimide fluorophore and an o-phenylenediamine derived triamide receptor, Chem. Commun., 2006, 109–111.

    Google Scholar 

  16. A. Loudet and K. Burgess, BODIPY dyes and their derivatives: syntheses and spectroscopic properties, Chem. Rev., 2007, 107, 4891–4932

    Article  CAS  Google Scholar 

  17. K. Tanaka, T. Miura, N. Umezawa, Y. Urano, K. Kikuchi, T. Higuchi and T. Nagano, Rational design of fluorescein-based fluorescence probes: Mechanism-based design of a maximum fluorescence probe for singlet oxygen, J. Am. Chem. Soc., 2001, 123, 2530–2536.

    Article  CAS  Google Scholar 

  18. S. Ozlem and E. U. Akkaya, Thinking outside the silicon box: Molecular AND logic as an additional layer of selectivity in singlet oxygen generation for photodynamic therapy, J. Am. Chem. Soc., 2009, 131, 48–49.

    Article  CAS  Google Scholar 

  19. Z. Shen, H. Rohr, K. Rurack, H. Uno, M. Spieles, B. Schulz, G. Reck and N. Ono, Boron-diindomethene (BDI) dyes and their tetrahydrobicyclo precursors-en route to a new class of highly emissive fluorophores for the red spectral range, Chem.–Eur. J., 2004, 10, 4853–4871.

    Article  CAS  Google Scholar 

  20. T. Yogo, Y. Urano, Y. Ishitsuka, F. Maniwa and T. Nagano, Highly efficient and photostable photosensitizer based on BODIPY chromophore, J. Am. Chem. Soc., 2005, 127, 12162–12163.

    Article  CAS  Google Scholar 

  21. K. Yamada, T. Toyota, K. Takakura, M. Ishimaru and T. Sugawara, Preparation of BODIPY probes for multicolor fluorescence imaging studies of membrane dynamics, New J. Chem., 2001, 25, 667–669.

    Article  CAS  Google Scholar 

  22. H. Sunahara, Y. Urano, H. Kojima and T. Nagano, Design and synthesis of a library of BODIPY-based environmental polarity sensors utilizing photoinduced electron-transfer-controlled fluorescence ON/OFF switching, J. Am. Chem. Soc., 2007, 129, 5597–5604.

    Article  CAS  Google Scholar 

  23. C. Goze, G. Ulrich, L. J. Mallon, B. D. Allen, A. Harriman and R. Ziessel, Synthesis and photophysical properties of borondipyrromethene dyes bearing aryl substituents at the boron center, J. Am. Chem. Soc., 2006, 128, 10231–10239.

    Article  CAS  Google Scholar 

  24. C. Goze, G. Ulrich and R. Ziessel, Tetrahedral boron chemistry for the preparation of highly efficient “cascatelle” devices, J. Org. Chem., 2007, 72, 313–322.

    Article  CAS  Google Scholar 

  25. C. Goze, G. Ulrich and R. Ziessel, Unusual fluorescent monomeric and dimeric dialkynyl dipyrromethene-borane complexes, Org. Lett., 2006, 8, 4445–4448.

    Article  CAS  Google Scholar 

  26. A. Cui, X. Peng, J. Fan, X. Chen, Y. Wu and B. Guo, Synthesis, spectral properties and photostability of novel boron-dipyrromethene dyes, J. Photochem. Photobiol., A, 2007, 186, 85–92.

    Article  CAS  Google Scholar 

  27. J. Shin, B. O. Patrick and D. Dolphin, Self-assembly via intermolecular hydrogen-bonding between o-/m-/p-NH2 and BF2 groups on dipyrromethenes, Tetrahedron Lett., 2008, 49, 5515–5518.

    Article  CAS  Google Scholar 

  28. M. Broring, R. Kruger, S. Link, C. Kleeberg, S. Kohler, X. Xie, B. Ventura and L. Flamigni, Bis(BF2)-2,2′-bidipyrrins (BisBODIPYs): highly fluorescent BODIPY dimers with large stokes shifts, Chem.–Eur. J., 2008, 14, 2976–2983.

    Article  Google Scholar 

  29. Y. Zhao and D. G. Truhlar, Benchmark databases for nonbonded interactions and their use to test density functional theory, J. Chem. Theory Comput., 2005, 1, 415–432

    Article  CAS  Google Scholar 

  30. Y. Zhao and D. G. Truhlar, Design of density functionals that are broadly accurate for thermochemistry, thermochemical kinetics, and nonbonded interactions, J. Phys. Chem. A, 2005, 109, 5656–5657.

    Article  CAS  Google Scholar 

  31. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, GAUSSIAN 03 (Revision B.05), Gaussian, Inc., Wallingford, CT, 2004.

    Google Scholar 

  32. Y. Urano, M. Kamiya, T. Kanda, T. Ueno, K. Hirose and T. Nagano, Evolution of fluorescein as a platform for finely tunable fluorescence probes, J. Am. Chem. Soc., 2005, 127, 4888–4894.

    Article  CAS  Google Scholar 

  33. H. L. Kee, C. Kirmaier, L. Yu, P. Thamyongkit, W. J. Youngblood, M. E. Calder, L. Ramos, B. C. Noll, D. F. Bocian, W. R. Scheidt, R. R. Birge, J. S. Lindsey and D. Holten, Structural control of the photodynamics of boron-dipyrrin complexes, J. Phys. Chem. B, 2005, 109, 20433–20443.

    Article  CAS  Google Scholar 

  34. J. Banuelos Prieto, F. Lopez Arbeloa, V. Martınez Martınez, T. Arbeloa Lopez, F. Amat-Guerri, M. Liras and I. Lopez Arbeloa, Photophysical properties of a new 8-phenyl analogue of the laser dye PM567 in different solvents: internal conversion mechanisms, Chem. Phys. Lett., 2004, 385, 29–35.

    Article  Google Scholar 

  35. Y. H. Yu, A. B. Descalzo, Z. Shen, H. Rohr, Q. Liu, Y. W. Wang, M. Spieles, Y. Z. Li, R. K. Urack and X. Z. You, Mono- and di(dimethylamino)styryl-substituted borondipyrromethene and borondiindomethene dyes with intense near-infrared fluorescence, Chem.–Asian J., 2006, 1, 176–187.

    Article  CAS  Google Scholar 

  36. J. Waluk, Ground- and excited-state tautomerism in porphycenes, Acc. Chem. Res., 2006, 39, 945–952.

    Article  CAS  Google Scholar 

  37. W. Qin, M. Baruah, M. Van der Auweraer, F. C. De Schryver and N. Boens, Photophysical properties of borondipyrromethene analogues in solution, J. Phys. Chem. A, 2005, 109, 7371–7384.

    Article  CAS  Google Scholar 

  38. T. Ueno, Y. Urano, H. Kojima and T. Nagano, Mechanism-based molecular design of highly selective fluorescence probes for nitrative stress, J. Am. Chem. Soc., 2006, 128, 10640–10641.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianzhuang Jiang.

Additional information

Electronic supplementary information (ESI) available: Molecule orbital energy levels for 1–6; electronic absorption and fluorescent spectra properties of compounds 1–6 in different solvents. CCDC reference numbers 798782–798787. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c1pp00001b

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Wan, L., Zhang, D. et al. Modulation of the spectroscopic property of Bodipy derivates through tuning the molecular configuration. Photochem Photobiol Sci 10, 1030–1038 (2011). https://doi.org/10.1039/c1pp00001b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c1pp00001b

Navigation