Issue 21, 2011

Generation of oxygen gradients in microfluidic devices for cell culture using spatially confined chemical reactions

Abstract

This paper reports a microfluidic device capable of generating oxygen gradients for cell culture using spatially confined chemical reactions with minimal chemical consumption. The microfluidic cell culture device is constructed by single-layer polydimethylsiloxane (PDMS) microfluidic channels, in which the cells can be easily observed by microscopes. The device can control the oxygen gradients without the utilization of bulky pressurized gas cylinders, direct addition of oxygen scavenging agents, or tedious gas interconnections and sophisticated flow control. In addition, due to the efficient transportation of oxygen within the device using the spatially confined chemical reactions, the microfluidic cell culture device can be directly used in conventional cell incubators without altering their gaseous compositions. The oxygen gradients generated in the device are numerically simulated and experimentally characterized using an oxygen-sensitive fluorescence dye. In this paper, carcinomic human alveolar basal epithelial (A549) cells have been cultured in the microfluidic device with a growth medium and an anti-cancer drug (Tirapazamine, TPZ) under various oxygen gradients. The cell experiment results successfully demonstrate the hyperoxia-induced cell death and hypoxia-induced cytotoxicity of TPZ. In addition, the results confirm the great cell compatibility and stable oxygen gradient generation of the developed device. Consequently, the microfluidic cell culture device developed in this paper is promising to be exploited in biological labs with minimal instrumentation to study cellular responses under various oxygen gradients.

Graphical abstract: Generation of oxygen gradients in microfluidic devices for cell culture using spatially confined chemical reactions

Supplementary files

Article information

Article type
Paper
Submitted
18 Apr 2011
Accepted
18 Aug 2011
First published
13 Sep 2011

Lab Chip, 2011,11, 3626-3633

Generation of oxygen gradients in microfluidic devices for cell culture using spatially confined chemical reactions

Y. Chen, A. D. King, H. Shih, C. Peng, C. Wu, W. Liao and Y. Tung, Lab Chip, 2011, 11, 3626 DOI: 10.1039/C1LC20325H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements