Skip to main content
Log in

Tunable photophysical properties of phenyleneethynylene based bipyridine ligands

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A bipyridine-based system with phenyleneethynylene at the 4,4’ positions (1) and its p-methyl (2) and p-methoxy (3) substituted derivatives were synthesized via Sonogashira coupling reactions. The photophysical properties of 1–3 and their related H+ and Zn2+ adducts (1:H+3:H+ and 1:Zn2+3:Zn2+) were investigated, as a function of solvent polarity, by using steady-state and time-resolved spectroscopic techniques. Molecular systems 1–3 exhibit trans conformation, whereas adducts with H+ and Zn2+ are conformationally locked cis species. The unsubstituted compound 1 emits at 360 nm with low fluorescence quantum yield (ϕfl = 0.2%) regardless of the solvent polarity. Fluorescence spectra of 2 and 3 are bathochromically shifted in polar solvents, and the p-methoxy (3) derivative possesses ϕfl as high as 12%. Complexation of 1–3 with H+ or Zn2+ in acetonitrile causes red-shift of the lowest energy absorption bands, whereas dramatic changes of the emission properties are found as a function of the electron donating ability of the substituents on the phenyleneethynylene moiety (–CH3 or–OCH3), suggesting a charge-transfer character of the lowest electronic transition of 1–3. 1:H+, 1:Zn2+, 2:H+ and 2:Zn2+ exhibit intense fluorescence with ϕfl up to 33% (1:Zn2+) whilst 3:H+ and 3:Zn2+ are found to be weakly emissive. The singlet radiative and non-radiative rate constants of compounds and complexes were determined, along with triplet parameters, via phosphorescence and transient absorption spectroscopy. More conclusive evidence regarding the protonation of bipyridine nitrogen atoms of compounds 1–3 were obtained through 1H NMR titration studies. These studies indicate that the conjugate molecular systems based on 2,2’-bipyridine and phenyleneethenylenes possess tunable optical properties which can be further utilized for preparing organic and inorganic luminophores with potential application in optoelectronic systems

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes and references

  1. A. P. de Silva, T. P. Vance, M. E. S. West and G. D. Wright, Bright molecules with sense, logic, numeracy and utility, Org. Biomol. Chem., 2008, 6, 2468–2480.

    Article  PubMed  CAS  Google Scholar 

  2. Y. R. Sun, N. C. Giebink, H. Kanno, B. W. Ma, M. E. Thompson and S. R. Forrest, Management of singlet and triplet excitons for efficient white organic light-emitting devices, Nature, 2006, 440, 908–912.

    Article  CAS  PubMed  Google Scholar 

  3. J. L. Bredas, D. Beljonne, V. Coropceanu and J. Cornil, Charge-transfer and energy-transfer processes in pi-conjugated oligomers and polymers: A molecular picture, Chem. Rev., 2004, 104, 4971–5003.

    Article  CAS  Google Scholar 

  4. D. Katsis, Y. H. Geng, J. J. Ou, S. W. Culligan, A. Trajkovska, S. H. Chen and L. J. Rothberg, Spiro-linked ter-, penta-, and heptafluorenes as novel amorphous materials for blue light emission, Chem. Mater., 2002, 14, 1332–1339.

    Article  CAS  Google Scholar 

  5. J. Kido and Y. Okamoto, Organo lanthanide metal complexes for electroluminescent materials, Chem. Rev., 2002, 102, 2357–2368.

    Article  CAS  Google Scholar 

  6. Y. Eichen, G. Nakhmanovich, V. Gorelik, O. Epshtein, J. M. Poplawski and E. Ehrenfreund, Effect of protonation-deprotonation processes on the electrooptical properties of bipyridine-containing poly(p-phenylene-vinylene) derivatives, J. Am. Chem. Soc., 1998, 120, 10463–10470.

    Article  CAS  Google Scholar 

  7. S. Leroy-Lhez and F. Fages, Polypyridine ligands with extended pi-conjugation: highly tunable fluorophores, C. R. Chim., 2005, 8, 1204–1212.

    Article  CAS  Google Scholar 

  8. C. O. Dietrich-Buchecker, J. P. Sauvage, N. Armaroli, P. Ceroni and V. Balzani, Protonation-driven formation of a double-stranded structure: a photophysical and 1H-NMR study, New J. Chem., 1996, 20, 801–808.

    CAS  Google Scholar 

  9. N. Armaroli, P. Ceroni, V. Balzani, J. M. Kern, J. P. Sauvage and J. L. Weidmann, Protonation of free 2,9-bis(p-biphenylyl)-1,10-phenanthroline sites in a 56-membered macrocycle and in its ReI and CuI complexes. Absorption spectra, luminescence properties, and excited state interactions, J. Chem. Soc., Faraday Trans., 1997, 93, 4145–4150.

    Article  CAS  Google Scholar 

  10. H. S. Joshi, R. Jamshidi and Y. Tor, Conjugated 1,10-phenanthrolines as tunable fluorophores, Angew. Chem., Int. Ed., 1999, 38, 2721–2725.

    Article  CAS  Google Scholar 

  11. A. Listorti, A. D. Esposti, R. S. K. Kishore, V. Kalsani, M. Schmittel and N. Armaroli, 1,10-phenanthrolines with tunable luminescence upon protonation: A spectroscopic and computational study, J. Phys. Chem. A, 2007, 111, 7707–7718.

    Article  CAS  PubMed  Google Scholar 

  12. T. Renouard, H. Le Bozec, S. Brasselet, I. Ledoux and J. Zyss, Tetrahedral bipyridyl copper(I) complexes: a new class of non-dipolar chromophore for nonlinear optics, Chem. Commun., 1999, 871–872.

    Google Scholar 

  13. J. C. Loren and J. S. Siegel, Synthesis and fluorescence properties of manisyl-substituted terpyridine, bipyridine, and phenanthroline, Angew. Chem., Int. Ed., 2001, 40, 754–757.

    Article  CAS  Google Scholar 

  14. Y. Liu, Y. Li and K. S. Schanze, Photophysics of p-conjugated oligomers and polymers that contain transition metal complexes, J. Photochem. Photobiol., C, 2002, 3, 1–23.

    Article  Google Scholar 

  15. N. Armaroli, From metal complexes to fullerene arrays: exploring the exciting world of supramolecular photochemistry fifteen years after its birth, Photochem. Photobiol. Sci., 2003, 2, 73–87.

    Article  CAS  PubMed  Google Scholar 

  16. L. Viau, S. Bidault, O. Maury, S. Brasselet, I. Ledoux, J. Zyss, E. Ishow, K. Nakatani, H. Le Bozec, All-optical orientation of photoisomerizable octupolar zinc(II) complexes in polymer films, J. Am. Chem. Soc., 2004, 126, 8386–8387.

    Article  CAS  PubMed  Google Scholar 

  17. M. Schmittel, V. Kalsani, C. Michel, P. Mal, H. Ammon, F. Jackel and J. P. Rabe, Towards nanotubular structures with large voids: Dynamic heteroleptic oligophenanthroline metallonanoscaffolds and their solution-state properties, Chem.–Eur.J., 2007, 13, 6223–6237.

    Article  CAS  PubMed  Google Scholar 

  18. M. W. Cooke, D. Chartrand and G. S. Hanan, Self-assembly of discrete metallosupramolecular luminophores, Coord. Chem. Rev., 2008, 252, 903–921.

    Article  CAS  Google Scholar 

  19. G. Accorsi, A. Listorti, K. Yoosaf and N. Armaroli, 1,10-Phenanthrolines: versatile building blocks for luminescent molecules, materials and metal complexes, Chem. Soc. Rev., 2009, 38, 1690–1700.

    Article  CAS  PubMed  Google Scholar 

  20. C. A. Breen, J. R. Tischler, V. Bulovic and T. M. Swager, Highly efficient blue electroluminescence from poly(phenylene ethynylene) via energy transfer from a hole-transport matrix, Adv. Mater., 2005, 17, 1981–1985.

    Article  CAS  Google Scholar 

  21. D. K. James and J. M. Tour, Molecular wires: From design to properties, Top. Curr. Chem., 2005, 257, 33–62.

    Article  CAS  PubMed  Google Scholar 

  22. P. V. James, P. K. Sudeep, C. H. Suresh and K. G. Thomas, Photophysical and theoretical investigations of oligo(p-phenyleneethynylene)s: Effect of alkoxy substitution and alkyne-aryl bond rotations, J. Phys. Chem. A, 2006, 110, 4329–4337.

    Article  CAS  PubMed  Google Scholar 

  23. I. B. Kim, R. Phillips, U. H. F. Bunz, Forced agglutination as a tool to improve the sensory response of a carboxylated poly(p-phenyleneethynylene), Macromolecules, 2007, 40, 814–817.

    Article  CAS  Google Scholar 

  24. H. Li, D. R. Powell, R. K. Hayashi and R. West, Poly((2,5-dialkoxy-p-phenylene)ethynylene-p-phenyleneethynylene)s and their model compounds, Macromolecules, 1998, 31, 52–58.

    Article  CAS  Google Scholar 

  25. H. Li and R. West, Structures and photophysical properties of silicon-containing phenyleneethynylene polymers, Macromolecules, 1998, 31, 2866–2871.

    Article  CAS  Google Scholar 

  26. J. F. Nierengarten, S. Zhang, A. Gegout, M. Urbani, N. Armaroli, G. Marconi and Y. Rio, Synthesis and optical properties of isomeric branched pi-conjugated systems, J. Org. Chem., 2005, 70, 7550–7557.

    Article  CAS  PubMed  Google Scholar 

  27. Y. Shirai, J. F. Morin, T. Sasaki, J. M. Guerrero and J. M. Tour, Recent progress on nanovehicles, Chem. Soc. Rev., 2006, 35, 1043–1055.

    Article  CAS  PubMed  Google Scholar 

  28. P. K. Sudeep, P. V. James, K. G. Thomas and P. V. Kamat, Singlet and triplet excited-state interactions and photochemical reactivity of phenyleneethynylene oligomers, J. Phys. Chem. A, 2006, 110, 5642–5649.

    Article  CAS  PubMed  Google Scholar 

  29. W. Zhang and J. S. Moore, Shape-persistent macrocycles: Structures and synthetic approaches from arylene and ethynylene building blocks, Angew. Chem., Int. Ed., 2006, 45, 4416–4439.

    Article  CAS  Google Scholar 

  30. X. Y. Zhao, M. R. Pinto, L. M. Hardison, J. Mwaura, J. Muller, H. Jiang, D. Witker, V. D. Kleiman, J. R. Reynolds and K. S. Schanze, Variable band gap poly(arylene ethynylene) conjugated polyelectrolytes, Macromolecules, 2006, 39, 6355–6366.

    Article  CAS  Google Scholar 

  31. L. T. Liu, D. Yaron and M. A. Berg, Electron-phonon coupling in phenyleneethynylene oligomers: A nonlinear one-dimensional configuration-coordinate model, J. Phys. Chem. C, 2007, 111, 5770–5782.

    Article  CAS  Google Scholar 

  32. M. Levitus, K. Schmieder, H. Ricks, K. D. Shimizu, U. H. F. Bunz and M. A. Garcia-Garibay, Steps to demarcate the effects of chromophore aggregation and planarization in poly(phenyleneethynylene)s. 1. Rotationally interrupted conjugation in the excited states of 1,4-bis(phenylethynyl)benzene, J. Am. Chem. Soc., 2001, 123, 4259–4265; addition/correction

    Article  CAS  PubMed  Google Scholar 

  33. M. Levitus, K. Schmieder, H. Ricks, K. D. Shimizu, U. H. F. Bunz, M. A. Garcia-Garibay, J. Am. Chem. Soc., 2002, 124, 8181.

    Article  CAS  Google Scholar 

  34. A. Beeby, K. Findlay, P. J. Low and T. B. Marder, A re-evaluation of the photophysical properties of 1,4-bis(phenylethynyl)benzene: A model for poly(phenyleneethynylene), J. Am. Chem. Soc., 2002, 124, 8280–8284.

    Article  CAS  PubMed  Google Scholar 

  35. L. Zhao, I. F. Perepichka, F. Turksoy, A. S. Batsanov, A. Beeby, K. S. Findlay and M. R. Bryce, 2,5-di(aryleneethynyl)pyrazine derivatives: synthesis, structural and optoelectronic properties, and light-emitting device, New J. Chem., 2004, 28, 912–918.

    Article  CAS  Google Scholar 

  36. T. Terashima, T. Nakashima and T. Kawai, Engineering control over the conformation of the alkyne-aryl bond by the introduction of cationic charge, Org. Lett., 2007, 9, 4195–4198.

    Article  CAS  PubMed  Google Scholar 

  37. A. Beeby, K. S. Findlay, P. J. Low, T. B. Marder, P. Matousek, A. W. Parker, S. R. Rutter and M. Towrie, Studies of the S1, state in a prototypical molecular wire using picosecond time-resolved spectroscopies, Chem. Commun., 2003, 2406–2407.

    Google Scholar 

  38. Y. Matsunaga, K. Takechi, T. Akasaka, A. R. Ramesh, P. V. James, K. G. Thomas and P. V. Kamat, Excited-State and photoelectrochemical behavior of pyrene-linked phenyleneethynylene oligomer, J. Phys. Chem. B, 2008, 112, 14539–14547.

    Article  CAS  PubMed  Google Scholar 

  39. A. Llanes-Pallas, C.-A. Palma, L. Piot, A. Belbakra, A. Listorti, M. Prato, P. Samorì, N. Armaroli and D. Bonifazi, Engineering of supramolecular H-bonded nanopolygons via self-assembly of programmed molecular modules, J. Am. Chem. Soc., 2009, 131, 509–520.

    Article  CAS  PubMed  Google Scholar 

  40. Y. Yamaguchi, T. Ochi, T. Wakamiya, Y. Matsubara and Z. Yoshida, New fluorophores with rod-shaped polycyano pi-conjugated structures: Synthesis and photophysical properties, Org. Lett., 2006, 8, 717–720.

    Article  CAS  PubMed  Google Scholar 

  41. Y. L. Tang, Z. J. Zhou, K. Ogawa, G. P. Lopez, K. S. Schanze and D. G. Whitten, Synthesis, self-assembly, and photophysical behavior of oligo phenylene ethynylenes: from molecular to supramolecular properties, Langmuir, 2009, 25, 21–25.

    Article  PubMed  CAS  Google Scholar 

  42. A. De Nicola, Y. Liu, K. S. Schanze and R. Ziessel, One-pot synthesis of 2,5-diethynyl-3,4-dibutylthiophene substituted multitopic bipyridine ligands: redox and photophysical properties of their ruthenium(II) complexes, Chem. Commun., 2003, 288–289.

    Google Scholar 

  43. K. D. Glusac, S. J. Jiang and K. S. Schanze, Photophysics of Ir(III) complexes with oligo(arylene ethynylene) ligands, Chem. Commun., 2002, 2504–2505.

    Google Scholar 

  44. U. W. Grummt, E. Birckner, E. Klemm, D. A. M. Egbe and B. Heise, Conjugated polymers with 2,2’ -bipyridine and diethinylenebenzene units: absorption and luminescence properties, J. Phys. Org. Chem., 2000, 13, 112–126.

    Article  CAS  Google Scholar 

  45. E. Birckner, U. W. Grummt, A. H. Goller, T. Pautzsch, D. A. M. Egbe, M. Al-Higari and E. Klemm, Photophysics of arylene and heteroaryleneethinylenes, J. Phys. Chem. A, 2001, 105, 10307–10315.

    Article  CAS  Google Scholar 

  46. S. Leroy-Lhez, A. Parker, P. Lapouyade, C. Belin, L. Ducasse, J. Oberle and F. Fages, Tunable fluorescence emission in pyrene-(2,2’ -bipyridine) dyads containing phenylene-ethynylene bridges, Photochem. Photobiol. Sci., 2004, 3, 949–958.

    Article  CAS  PubMed  Google Scholar 

  47. N. Armaroli, L. De Cola, V. Balzani, J. P. Sauvage, C. O. Dietrich-Buchecker and J. M. Kern, Absorption and luminescence properties of 1, 10-phenanthroline, 2,9-diphenyl-1, 10-phenanthroline, 2,9-dianisyl-1,10- phenanthroline and their protonated forms in dichloromethane solution, J. Chem. Soc., Faraday Trans., 1992, 88, 553–556.

    Article  CAS  Google Scholar 

  48. C. L. Cheng, D. S. N. Murthy, G. L. D. Ritchie, Molecular conformations from magnetic anisotropies, J. Chem. Soc., Faraday Trans. 2, 1972, 68, 1679–1690.

    Article  CAS  Google Scholar 

  49. S. T. Howard, Conformers, energetics, and basicity of 2,2’-bipyridine, J. Am. Chem. Soc., 1996, 118, 10269–10274.

    Article  CAS  Google Scholar 

  50. F. H. Westheimer and O. T. Benfey, The quantitative evaluation of the effect of hydrogen bonding on the strength of dibasic acids, J. Am. Chem. Soc., 1956, 78, 5309–5311.

    Article  CAS  Google Scholar 

  51. D. E. C. Corbridge and E. G. Cox, Five-covalent terpyridyl complexes of bivalent metals. Part I. The, stereochemistry of the zinc, cadmium, and copper compounds, J. Chem. Soc., 1956, 594–603.

    Google Scholar 

  52. K. Nakamoto, Ultraviolet spectra and structures of 2,2’-bipyridine and 2,2’,2”-terpyridine in aqueous solution, J. Phys. Chem., 1960, 64, 1420–1425.

    Article  CAS  Google Scholar 

  53. A. E. Dennis and R. C. Smith, “Turn-on” fluorescent sensor for the selective detection of zinc ion by a sterically-encumbered bipyridyl-based receptor, Chem. Commun., 2007, 4641–4643.

    Google Scholar 

  54. A. Ajayaghosh, P. Carol and S. Sreejith, A ratiometric fluorescence probe for selective visual sensing of Zn2+, J. Am. Chem. Soc., 2005, 127, 14962–14963.

    Article  CAS  PubMed  Google Scholar 

  55. N. Armaroli, L. De Cola, V. Balzani, J. P. Sauvage, C. O. Dietrich-Buchecker, J. M. Kern and A. Bailal, Absorption and emission properties of a 2-catenand, its protonated forms, and its complexes with Li+, Cu+, Ag+, Co2+, Ni2+, Zn2+, Pd2+ and Cd2+ - Tuning of the luminescence over the whole visible spectral region, J. Chem. Soc., Dalton Trans., 1993, 3241–3247.

    Google Scholar 

  56. J. N. Demas and G. A. Crosby, Measurement of photoluminescence quantum yields - Review, J. Phys. Chem., 1971, 75, 991–1024.

    Article  Google Scholar 

  57. S. R. Meech and D. Phillips, Photophysics of some common fluorescence standards, J. Photochem., 1983, 23, 193–217.

    Article  CAS  Google Scholar 

  58. K. Nakamaru, Synthesis, luminescence quantum yields, and lifetimes of Tris chelated Ru(II) mixed-ligand complexes including 3,3’-dimethyl-2,2’-bipyridyl, Bull. Chem. Soc. Jpn., 1982, 55, 2697–2705.

    Article  CAS  Google Scholar 

  59. K. Hosomizu, H. Imahori, U. Hahn, J. F. Nierengarten, A. Listorti, N. Armaroli, T. Nemoto and S. Isoda, Dendritic effects on structure and photophysical and photoelectrochemical properties of fullerene dendrimers and their nanoclusters, J. Phys. Chem. C, 2007, 111, 2777–2786.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. George Thomas or Nicola Armaroli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

James, P.V., Yoosaf, K., Kumar, J. et al. Tunable photophysical properties of phenyleneethynylene based bipyridine ligands. Photochem Photobiol Sci 8, 1432–1440 (2009). https://doi.org/10.1039/b9pp00002j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b9pp00002j

Navigation