Skip to main content
Log in

Photoreduction of Cr(vi) using hydroxoaluminiumtricarboxymonoamide phthalocyanine adsorbed on TiO2

  • Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Hydroxoaluminiumtricarboxymonoamide phthalocyanine (AlTCPc) adsorbed at different loadings on TiO2 Degussa P-25 was tested for Cr(vi) photocatalytic reduction under visible irradiation in the presence of 4-chlorophenol (4-CP) as sacrificial donor. A rapid reaction takes place in spite of the presumable aggregation of the dye on the TiO2 surface. The removal of Cr(vi) is fairly negligible under visible-light irradiation, either without photocatalyst or in the presence of bare TiO2. The fast capture of conduction band electrons by Cr(vi), which forms a surface complex with TiO2, inhibits the formation of reactive oxygen species in the reductive pathway. This fact and the easier oxidation of 4-CP as compared to AlTCPc hinder the photobleaching of the dye and make feasible Cr(vi) reduction under visible irradiation. The consumption of Cr(vi) follows a pseudo-first order kinetics; the decay constant depends, in the studied range, on the photocatalyst mass, but it is barely affected by dye loading. The presence of 4-CP is essential, but its concentration has no effect on the Cr(vi) decay rate. Oxidation products of 4-CP, such as hydroquinone, catechol or benzoquinone, are not observed. Direct evidence of the one-electron reduction of Cr(vi) to Cr(v) was obtained by EPR spectroscopy using citric acid as Cr(v) trapping agent. In this case, disappearance of Cr(v) also follows a first order decay, but conduction band electrons do not seem to be involved. The fact that oxidation products of 4-CP are not observed is consistent with the fast dark removal of reaction intermediates by Cr(v), proved by EPR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and References

  1. P. V. Kamat, Photochemistry on nonreactive and reactive (semiconductor) surfaces, Chem. Rev., 1993, 93, 267–300.

    Article  CAS  Google Scholar 

  2. J. Wade, An investigation of TiO2-ZnFe2O4 nanocomposites for visible-light photocatalysis, Master of Science in Electrical Engineering Thesis, Department of Electrical Engineering, College of Engineering, University of South Florida, 2005.

    Google Scholar 

  3. A. Hagfeldt, M. Grätzel, Light-induced redox reactions in nanocrystalline systems, Chem. Rev., 1995, 95, 49–68.

    Article  CAS  Google Scholar 

  4. A. V. Emeline, G. N. Kuzmin, and N. Serpone, Wavelength-dependent photostimulated adsorption of molecular O2 and H2 on second generation titania photocatalysts: The case of the visible-light-active N-doped TiO2 system, Chem. Phys. Lett., 2008, 454, 279–283.

    Article  CAS  Google Scholar 

  5. K. Kalyanasundaram, M. Grätzel, and E. Pelizzetti, Interfacial electron transfer in colloidal metal and semiconductor dispersions and photodecomposition of water, Coord. Chem. Rev., 1986, 69, 57–125.

    Article  Google Scholar 

  6. D. Chatterjee, and S. Dasgupta, Visible light induced photocatalytic degradation of organic pollutants, J. Photochem. Photobiol. C, 2005, 6, 186–205.

    Article  CAS  Google Scholar 

  7. R. Beranek, and H. Kisch, Tuning the optical and photoelectrochemical properties of surface-modified TiO2, Photochem. Photobiol. Sci., 2008, 7, 40–48.

    Article  CAS  PubMed  Google Scholar 

  8. G. Liu, T. Wu, J. Zhao, H. Hidaka, and N. Serpone, Photoassisted degradation of dye pollutants. 8. Irreversible degradation of alizarin red under visible light radiation in air-equilibrated aqueous TiO2 dispersions, Environ. Sci. Technol., 1999, 33, 2081–2087.

    Article  CAS  Google Scholar 

  9. G. Liu, X. Li, J. Zhao, S. Horikoshi, and H. Hidaka, Photooxidation mechanism of dye alizarin red in TiO2 dispersions under visible illumination: an experimental and theoretical examination, J. Mol. Catal. A, 2000, 153, 221–229.

    Article  CAS  Google Scholar 

  10. C. Chen, X. Li, W. Ma, J. Zhao, H. Hidaka, and N. Serpone, Effect of transition metal ions on the TiO2-assisted photodegradation of dyes under visible irradiation: A probe for the interfacial electron transfer process and reaction mechanism, J. Phys. Chem. B., 2002, 106, 318–324.

    Article  CAS  Google Scholar 

  11. H. Ross, J. Bendig, and S. Hecht, Sensitized photocatalytical oxidation of terbutylazine, Sol. Energy Mater. Sol. Cells, 1994, 33, 475–481.

    Article  CAS  Google Scholar 

  12. V. Iliev, Phthalocyanine-modified titania—catalyst for photooxidation of phenols by irradiation with visible light, J. Photochem. Photobiol. A., 2002, 151, 195–199.

    Article  CAS  Google Scholar 

  13. G. Mele, R. Del Sole, G. Vasapollo, E. García López, L. Palmisano, and M. Schiavello, Photocatalytic degradation of 4-nitrophenol in aqueous suspension by using polycrystalline TiO2 impregnated with functionalized Cu(ii)–porphyrin or Cu(ii)–phthalocyanine, J. Catal., 2003, 217, 334–342.

    Article  CAS  Google Scholar 

  14. D. Chatterjee, and A. Mahata, Demineralization of organic pollutants on the dye modified TiO2 semiconductor particulate system using visible light, Appl. Catal. B, 2001, 33, 119–125.

    Article  CAS  Google Scholar 

  15. D. Chatterjee, and A. Mahata, Visible light induced photodegradation of organic pollutants on dye adsorbed TiO2 surface, J. Photochem. Photobiol. A, 2002, 153, 199–204.

    Article  CAS  Google Scholar 

  16. D. Chatterjee, and A. Mahata, Evidence of superoxide radical formation in the photodegradation of pesticide on the dye modified TiO2 surface using visible light, J. Photochem. Photobiol. A, 2004, 165, 19–23.

    Article  CAS  Google Scholar 

  17. V. Iliev, D. Tomova, L. Bilyarska, L. Prahov, and L. Petrov, Phthalocyanine modified TiO2 or WO3-catalysts for photooxidation of sulfide and thiosulfate ions upon irradiation with visible light, J. Photochem. Photobiol. A, 2003, 159, 281–287.

    Article  CAS  Google Scholar 

  18. C. Wang, J. Li, G. Mele, G. -M. Yang, F. -X. Zhang, L. Palmisano, and G. Vasapollo, Efficient degradation of 4-nitrophenol by using functionalized porphyrin-TiO2 photocatalysts under visible irradiation, Appl. Catal. B: Environ., 2007, 76, 218–226.

    Article  CAS  Google Scholar 

  19. J. Hodak, C. Quinteros, M. I. Litter, E. San Román, Sensitization of TiO2 with phthalocyanines. I. Photooxidations, using hydroxoaluminum tricarboxymonoamide- phthalocyanine adsorbed on TiO2, J. Chem. Soc., Faraday Trans., 1996, 92, 5081–5088.

    Article  CAS  Google Scholar 

  20. Y. Cho, W. Choi, C.-H. Lee, T. Hyeon, H.-I. Lee, Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2, Environ. Sci. Technol., 2001, 35, 966–970.

    Article  CAS  PubMed  Google Scholar 

  21. M. Ni, M. K. H. Leung, D. Y. C. Leung, and K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production, Renew. Sustain. Energy Rev., 2007, 11, 401–425.

    Article  CAS  Google Scholar 

  22. M. I. Litter, Heterogeneous Photocatalysis. Transition metal ions in photocatalytic systems, Appl. Catal. B, 1999, 23, 89–114.

    Article  CAS  Google Scholar 

  23. J. J. Testa, M. A. Grela, and M. I. Litter, Experimental evidence in favor of an initial one-electron transfer process in the heterogeneous photocatalytic reduction of chromium (VI) over TiO2, Langmuir, 2001, 17, 3515–3517.

    Article  CAS  Google Scholar 

  24. J. J. Testa, M. A. Grela, and M. I. Litter, Heterogeneous photocatalytic reduction of chromium (VI) over TiO2 particles in the presence of oxalate. Involvement of Cr (V) species, Environ. Sci. Technol., 2004, 38, 1589–1594.

    Article  CAS  PubMed  Google Scholar 

  25. J. M. Meichtry, M. Brusa, G. Mailhot, M. A. Grela, and M. I. Litter, Heterogeneous photocatalysis of Cr(VI) in the presence of citric acid over TiO2 particles: relevance of Cr(V)-citrate complexes, Appl. Catal. B, 2007, 71, 101–107.

    Article  CAS  Google Scholar 

  26. Fu, G. Lu, and S. Li, Adsorption and photo-induced reduction of Cr(VI) ion in Cr(VI)-4CP (4-chlorophenol) aqueous system in the presence of TiO2, as photocatalyst, J. Photochem. Photobiol. A, 1998, 114, 81–88.

    Article  CAS  Google Scholar 

  27. H. Kyung, J. Lee, and W. Choi, Simultaneous and synergistic conversion of dyes and heavy metal ions in aqueous TiO2 suspensions under visible-light illumination, Environ. Sci. Technol., 2005, 39, 2376–2382.

    Article  CAS  PubMed  Google Scholar 

  28. Y. Cho, H. Kyung, and W. Choi, Visible light activity of TiO2 for the photoreduction of CCl4 and Cr(VI) in the presence of nonionic surfactant (Brij), Appl. Catal. B, 2004, 52, 23–32.

    Article  CAS  Google Scholar 

  29. B. Sun, E. P. Reddy, and P. G. Smirniotis, Visible light Cr(VI) reduction and organic chemical oxidation by TiO2 photocatalysis, Environ. Sci. Technol., 2005, 39, 6251–6259.

    Article  CAS  PubMed  Google Scholar 

  30. Y. Di Iorio, E. San Román, M. I. Litter, and M. A. Grela, Photoinduced reactivity of strongly coupled TiO2 ligands under visible irradiation. An examination of Alizarin Red@TiO2 nanoparticulate system, J. Phys. Chem. C., 2008, 112, 16532–16538.

    Article  CAS  Google Scholar 

  31. A. Sun, G. Zhang, and Y. Xu, Photobleaching of metal phthalocyanine sulfonates under UV and visible light irradiation over TiO2 semiconductor, Mater. Lett., 2005, 59, 4016–4019.

    Article  CAS  Google Scholar 

  32. M. G. Lagorio, L. E. Dicelio, E. San Román, Visible and near IR spectroscopical and photochemical characterization of substituted metallophthalocyanines, J. Photochem. Photobiol. A, 1993, 72, 153–161.

    Article  Google Scholar 

  33. E. E. Wegner, and A. W. Adamson, Photochemistry of complex ions. III. Absolute, quantum yields for the photolysis of some aqueous chromium(III) complexes. Chemical actinometry in the long wavelength visible region, J. Am. Chem. Soc., 1966, 88, 394–404.

    Article  CAS  Google Scholar 

  34. M. das Graças, A. Korn, A. C. Ferreira, A. C. S. Costa, J. A. Nóbrega, and C. R. Silva, Comparison of decomposition procedures for analysis of titanium dioxide using inductively coupled plasma optical emission spectrometry, Microchemical J., 2002, 71, 41–48.

    Article  Google Scholar 

  35. W. W. Wendlandt and H. G. Hecht, Reflectance Spectroscopy, Wiley, New York, 1966.

    Google Scholar 

  36. S. Amore, M. G. Lagorio, L. E. Dicelio, E. San Román, Photophysical properties of supported dyes. Quantum yield calculations in scattering media, Progr. Reaction Kinetics Mechan., 2001, 26, 159–177.

    Article  CAS  Google Scholar 

  37. J. H. Baxendale, and N. K. Bridge, Photoreduction of ferric compounds in aqueous solution, J. Phys. Chem., 1955, 59, 783–788.

    Article  CAS  Google Scholar 

  38. W.-Y. Lin, C. Wei, S. German, and K. Rajeshwar, Photocatalytic reduction and immobilization of hexavalent chromium at titanium dioxide in aqueous basic media, J. Electrochem. Soc., 1993, 140, 2477–2482.

    Article  CAS  Google Scholar 

  39. P. Urone, APHA AWWA 1955, 1992. ASTM Standards D 1687–92, 1999.

    Google Scholar 

  40. A. W. Snow and W. R. Barger, in Phthalocyanines, properties and applications, ed. C. C. Leznoff and A. B. P. Lever, VCH Publish., Inc., New York, 1989, p. 374.

  41. M. G. Lagorio, L. E. Dicelio, M. I. Litter, and E. San, Román, Modeling of fluorescence quantum yields of supported dyes. Aluminum carboxyphthalocyanine on cellulose, J. Chem. Soc., Faraday Trans., 1998, 94, 419–425.

    Article  Google Scholar 

  42. S. T. Martin, H. Herrmann, and M. R. Hoffmann, Time-resolved microwave conductivity. Part 2.–Quantum-sized TiO2 and the effect of adsorbates and light intensity on charge-carrier dynamics, J. Chem. Soc., Faraday Trans., 1994, 90, 3323–3330.

    Article  CAS  Google Scholar 

  43. S. J. Hug, H.-U. Laubscher, and B. R. James, Iron(iii) catalyzed photochemical reduction of chromium(vi) by oxalate and citrate in aqueous solutions, Environ. Sci. Technol., 1997, 31, 160–170.

    Article  CAS  Google Scholar 

  44. A. Bard and H. Lund, in Encyclopedia of Electrochemistry of the Elements, Marcel-Dekker, New York, XII-3, 1978, p. 413.

    Google Scholar 

  45. C. M. Cawich, A. Ibrahim, K. L. Link, A. Bumgartner, M. D. Patro, S. N. Mahapatro, P. A. Lay, A. Levina, S. S. Eaton, and G. R. Eaton, Synthesis of a pyridinium bis[citrato(2-)]oxochromate(V) complex and its ligand-exchange reactions, Inorg. Chem., 2003, 42, 6458–6468.

    Article  CAS  PubMed  Google Scholar 

  46. J. Colucci, V. Montalvo, R. Hernandez, and C. Poullet, Electrochemical oxidation potential of photocatalyst reducing agents, Electrochim. Acta, 1999, 44, 2507–2514.

    Article  CAS  Google Scholar 

  47. S. W. Benson, in The Foundations of Chemical Kinetics, McGraw-Hill Book Company, New York, 1960, ch. 3, pp. 33–34.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta I. Litter.

Additional information

This paper was published as part of the themed issue of contributions from the 5th European Meeting on Solar Chemistry and Photocatalysis: Environmental Applications held in Palermo, Italy, October 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meichtry, J.M., Rivera, V., Di Iorio, Y. et al. Photoreduction of Cr(vi) using hydroxoaluminiumtricarboxymonoamide phthalocyanine adsorbed on TiO2. Photochem Photobiol Sci 8, 604–612 (2009). https://doi.org/10.1039/b816441j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b816441j

Navigation