Issue 47, 2008

Plant MTs—long neglected members of the metallothionein superfamily

Abstract

Occurrence of metallothioneins (MTs) was initially thought to be restricted to the animal kingdom, and the corresponding functions such as detoxification of heavy metal ions were assumed to be taken over in plants by the enzymatically synthesized phytochelatins. This perception was revised in the past years, and the existence of plant metallothioneins is generally accepted. Compared to the vertebrate forms, members of the plant MT family display a significantly larger sequence diversity, however, surprisingly little information is available concerning their possible functions, properties, and structures. Gene expression studies, and thus studies on the mRNA level, are the major source of data aiming at elucidating the function of plant MTs. However, so far it is not possible to unambiguously assign a specific function to a given metallothionein as proposed functions overlap, are complementary to each other, or even contradictory results are obtained. With respect to the structures and properties of plant metallothioneins even less scientific contributions are available illustrating the early stages, in which this research area resides. Existing data covers the metal ion content of the different plant metallothionein species and the pH stabilities of the resulting metal–thiolate clusters. Further, for a limited selection of proteins the number of clusters formed has been proposed and predictions towards the secondary structure of the protein backbone made. A recently determined three-dimensional structure of the larger domain of the wheat metallothionein Ec-1 describes a metal ion coordination mode unprecedented for any metallothionein so far.

Graphical abstract: Plant MTs—long neglected members of the metallothionein superfamily

Article information

Article type
Perspective
Submitted
11 Jun 2008
Accepted
29 Aug 2008
First published
29 Oct 2008

Dalton Trans., 2008, 6663-6675

Plant MTs—long neglected members of the metallothionein superfamily

E. Freisinger, Dalton Trans., 2008, 6663 DOI: 10.1039/B809789E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements