Skip to main content

Advertisement

Log in

Laser flash photolysis study of the triplet reactivity of β-lapachones

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The photochemical reactivity of β-lapachone (1), nor-β-lapachone (2) and β-lapachone 3-sulfonic acid (3) has been examined by laser flash photolysis. Excitation (λ = 266 nm) of degassed solutions of 1–3, in acetonitrile or dichloromethane, resulted in the formation of detectable transients with absorption maxima at 300, 380 and 650 nm. These transients, with lifetimes of 5.0 μs, were quenched by β-carotene at a diffusion-controlled rate constant and assigned to the triplet excited states of 1–3. Addition of hydrogen donors, such as 2-propanol, 1,4-cyclohexadiene, 4-methoxyphenol or indole led to the formation of new transients, which were assigned to the corresponding ketyl radicals obtained from the hydrogen abstraction reaction by the triplets 1–3. In the presence of triethylamine it was observed the formation of the long-lived anion radical derived from 1–3, which shows absorption maxima at 300 and 380 nm. The low values observed for the hydrogen abstraction rate constants for the β-lapachones 1–3 using 2-propanol and 1,4-cyclohexadiene as quenchers led us to conclude that their triplet excited states show ππ* character.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Subramanian, M. M. C. Ferreira, M. Trsic, A structure-activity relationship of lapachol and some derivatives of 1,4-naphthoquinones against carcinosarcoma Walker 256, Struct. Chem., 1998, 9, 47.

    Article  CAS  Google Scholar 

  2. C. N. Pinto, A. P. Dantas, K. C. G. de Moura, F. S. Emery, P. F. Polequevitch, M. D. Pinto, S. L. de Castro, A. V. Pinto, Chemical reactivity studies with naphthoquinones from Tabebuia with antitrypanosomal efficacy, Arzneim-Forsch, 2000, 50, 1120.

    CAS  Google Scholar 

  3. A. F. dos Santos, P. A. L. Ferraz, A. V. Pinto, M. C. F. R. Pinto, M. O. F. Goulart, A. E. G. Sant’Ana, Molluscicidal activity of 2-hydroxy-3-alkyl-1,4-naphthoquinones and derivatives, Int. J. Parasitol., 2000, 30, 1199.

    Article  CAS  PubMed  Google Scholar 

  4. A. F. dos Santos, P. A. L. Ferraz, F. C. de Abreu, E. Chiari, M. O. F. Goulart, A. E. G. Sant’Ana, Molluscicidal and trypanocidal activities of lapachol derivatives, Planta Med., 2001, 67, 92.

    Article  CAS  Google Scholar 

  5. M. J. Teixeira, Y. M. Almeida, J. R. Viana, J. G. Holanda Filho, T. P. Rodrigues, J. R. C. Jr. Prata, I. C. B. Coelho, V. S. Rao, M. M. L. Pompeu, In vitro and in vivo leishmanicidal activity of 2-hydroxy-3-(3-methyl-2-butenyl)-1,4-naphthoquinone (lapachol), Phytother. Res., 2001, 15, 44.

    Article  CAS  PubMed  Google Scholar 

  6. K. V. Rao, Quinone natural products-streptonigrin (NSC-45383) and lapachol (NSC-11905) structure-activity relationships, Cancer Chemother. Rep., 1974, 4, 11.

    CAS  Google Scholar 

  7. S. Gafner, J.-L. Wolfender, M. Nianga, H. Stoeckli-Evans, K. Hostettmann, Antifungal and antibacterial naphthoquinones from Newbouldia laevis roots, Phytochemistry, 1996, 4, 1315.

    Article  Google Scholar 

  8. R. Docampo, J. N. Lopes, F. S. Cruz, W. DeSouza, Trypanosoma cruzi: ultrastructural and metabolic alterations of epimastigotes by β-lapachone, Exp. Parasitol., 1977, 42, 142.

    Article  CAS  PubMed  Google Scholar 

  9. R. Docampo, F. S. Cruz, A. Boveris, R. P. A. Muniz, D. M. S. Esquivel, Lipid peroxidation and generation of free-radicals, superoxide anion, and hydrogen peroxide in β-lapachone-treated Trypanosome Cruzi epimastigotes, Arch. Biochem. Biophys., 1978, 186, 292.

    Article  CAS  PubMed  Google Scholar 

  10. K. C. G. de Moura, F. S. Emerya, C. Neves-Pinto, M. C. F. R. Pinto, A. P. Dantas, K. Salomão, S. L. Castro, A. V. Pinto, Trypanocidal activity of isolated naphthoquinones from Tabebuia and some heterocyclic derivatives: a review from an interdisciplinary study, J. Braz. Chem. Soc., 2001, 12, 325.

    Article  Google Scholar 

  11. A. B. Pardee, Y. Z. Li, C. J. Li, Cancer therapy with β-lapachones, Curr. Cancer Drug Targets, 2002, 2, 227.

    Article  CAS  PubMed  Google Scholar 

  12. F. C. Abreu, D. C. M. Ferreira, J. Wadhawan, C. Amatore, V. F. Ferreira, M. N. Silva, M. C. B. V. Souza, T. S. Gomes, E. A. Ximenes, M. O. F. Goulart, Electrochemistry of β-lapachone and its diazoderivative: relevance to their compared antimicrobial activities, Electrochem. Commun., 2005, 7, 767.

    Article  CAS  Google Scholar 

  13. J. S. Driscoll, G. F. Hazard, H. B. Wood, Structure-antitumor activity relationships among quinone derivatives, Cancer Chemother. Rep., 1974, 4, 1.

    CAS  Google Scholar 

  14. J. N. Lopes, F. S. Cruz, R. DoCampo, In vitro and in vivo evaluation of the toxicity of 1,4-naphthoquinone and 1,2-naphthoquinone derivatives against Trypanosoma cruzi, Ann. Trop. Med. Parasit., 1978, 72, 523.

    Article  CAS  PubMed  Google Scholar 

  15. C. J. Li, L. J. Zhang, B. J. Dezubw, C. S. Crumpacker, A. B. Pardee, Three inhibitors of type 1 human immunodeficiency virus long terminal repeat-directed gene expression and virus replication, Proc. Natl. Acad. Sci. USA, 1993, 90, 1839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. M. E. Dolan, B. Frydman, C. B. Thompson, A. M. Diamond, B. J. Garbiras, A. R. Safa, W. T. Beck, L. Marton, Effects of 1,2-naphthoquinones on human tumor cell growth and lack of cross-resistance with other anticancer agents, J. Anticancer Drugs, 1998, 9, 437.

    Article  CAS  Google Scholar 

  17. C. J. Li, I. Averboukh, A. B. Pardee, β-Lapachone, a novel DNA topoisomerase I inhibitor with a mode of action different from camptothecin, J. Biol. Chem., 1993, 268, 22463.

    Article  CAS  PubMed  Google Scholar 

  18. D. A. Boothman, D. K. Trask, A. B. Pardee, Inhibition of potentially lethal DNA damage repair in human tumor cells by β-lapachone, an activator of topoisomerase I, Cancer Res., 1989, 49, 605.

    CAS  PubMed  Google Scholar 

  19. B. Frydman, L. J. Marton, J. S. Sun, K. Neder, D. T. Witiak, A. A. Liu, H.-M. Wang, Y. Mao, H.-V. Wu, M. M. Sanders, L. F. Liu, Induction of DNA Topoisomerase II-mediated DNA cleavage by β-lapachone and related naphthoquinones, Cancer Res., 1997, 57, 620.

    CAS  PubMed  Google Scholar 

  20. S. M. Planchon, S. Wuerzberger, B. Frydman, D. T. Witiak, P. Hutson, D. R. Church, G. Wilding, D. A. Boothman, β-Lapachone mediated apoptosis in human promyelocytic leukemia (HL-60) and human prostate cancer cells: a p53-independent response, Cancer Res., 1995, 55, 3706.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. C. J. Li, C. Wang, A. B. Pardee, Induction of apoptosis by β-lapachone in human prostate cancer cells, Cancer Res., 1995, 55, 3712.

    CAS  PubMed  Google Scholar 

  22. J. J. Pink, S. M. Planchon, C. Tagliarino, M. E. Varnes, D. Siegel, D. A. Boothman, NAD(P)H:Quinone oxidoreductase activity is the principal determinant of β-lapachone cytotoxity, J. Biol. Chem., 2000, 276, 6416.

    Google Scholar 

  23. X. H. Ci, R. S. Silva, J. L. Goodman, D. E. Nicodem, D. G. Whitten, A reversible photoredox reaction-electron-transfer photoreduction of β-lapachone by triethylamine, J. Am. Chem. Soc., 1988, 110, 8548

    Article  CAS  Google Scholar 

  24. X. H. Ci, R. S. Silva, D. E. Nicodem, D. G. Whitten, Electron and hydrogen-atom transfer mechanisms for the photo-reduction of ortho-quinones - Visible light induced photoreactions of β-lapachone with amines, alcohols, and amino-alcohols, J. Am. Chem. Soc., 1989, 111, 1337.

    Article  CAS  Google Scholar 

  25. E. Paternò, Ricerche sull’acido lapacico, Gazz. Chim. Ital., 1882, 12, 337.

    Google Scholar 

  26. S. C. Hooker, The constitution of lapachic acid (lapachol) and its derivatives, J. Chem. Soc., 1892, 61, 611.

    Article  CAS  Google Scholar 

  27. F. W. Ribeiro, M. C. F. R. Pinto, A. V. Pinto, C. G. T. Oliveira, V. F. Ferreira, 13C Nuclear magnetic resonance study of 1,2- and 1,4-naphthoquinones and their derivatives, J. Braz. Chem. Soc., 1990, 1, 55.

    Article  CAS  Google Scholar 

  28. S. C. Hooker, Lomatiol Part 11. Its occurrence, constitution, relation to and conversion into lapachol. Also a synthesis of lapachol, J. Am. Chem. Soc., 1936, 58, 1181.

    Article  CAS  Google Scholar 

  29. A. V. Pinto, M. C. F. R. Pinto, C. G. T. Oliveira, Synthesis of α- nor-lapachone and β- nor-lapachone in acid medium and reactions with N-bromosuccinimide, Ann. Acad. Brazil. Ciênc., 1982, 54, 107.

    Google Scholar 

  30. L. F. Fieser, Naphthoquinone antimalarials. 16. Water-soluble derivatives of alcoholic and unsaturated compounds, J. Am. Chem. Soc., 1948, 70, 3232.

    Article  CAS  PubMed  Google Scholar 

  31. R. Bensasson, E. J. Land, B. Mavdinas, Triplet-states of Carotenoids from photosynthetic bacteria studied by nanosecond ultraviolet and electron pulse irradiation, Photochem. Photobiol., 1976, 23, 189.

    Article  CAS  PubMed  Google Scholar 

  32. C. V. Kumar, S. Chattopadhay, P. K. Das, Triplet excitation transfer to carotenoids from biradical intermediates in Norrish type-II photoreactions of ortho-alkyl-substituted aromatic carbonyl compounds, J. Am. Chem. Soc., 1983, 105, 5143.

    Article  CAS  Google Scholar 

  33. O. Stern, M. Volmer, The fading time of fluorescence, Physik Z., 1919, 20, 183.

    CAS  Google Scholar 

  34. M. Barra, E. D. Harder, J. P. Balfe, Influence of solvent polarity on the photoreactivity of 2-4-ring aromatic ortho-quinones, J. Chem. Soc., Perkin Trans. 2, 1999, 1439.

    Google Scholar 

  35. R. S. Silva, D. E. Nicodem, Solvent and temperature effects on the phosphorescence of 9,10-phenanthrenequinone in fluid solution, J. Photochem. Photobiol., A, 2004, 162, 231.

    Article  CAS  Google Scholar 

  36. Y. Harada, S. Watanabe, T. Suzuki, T. Ichimura, Photochemical reaction dynamics of 9,10-phenanthrenequinone and 1,2-naphthoquinone with hydrogen donors in solution, J. Photochem. Photobiol., A, 2005, 179, 161.

    Article  CAS  Google Scholar 

  37. Y. Pan, Y. Fu, S. Liu, H. Yu, Y. Gao, Q. Guo, S. Yu, Studies on photoinduced H-atom and electron transfer reactions of o-naphthoquinones by laser flash photolysis, J. Phys. Chem. A, 2006, 110, 7316.

    Article  CAS  PubMed  Google Scholar 

  38. N. C. de Lucas, M. M. Elias, C. L. Firme, R. J. Corrêa, S. G. Garden, J. C. Netto-Ferreira and D. E. Nicodem, to be published.

  39. J. C. Scaiano, M. V. Encinas, Reaction of benzophenone triplets with allylic hydrogen - a laser flash photolysis study, J. Am. Chem. Soc., 1981, 103, 6393.

    Article  Google Scholar 

  40. J. C. Scaiano, V. Wintgens, J. C. Netto-Ferreira, Importance of neighbouring group participation in the remarkably rapid photoreduction of 1,1,4,4-tetramethyl-1,4-dihydro-2,3-naphthalendione, Photochem. Photobiol., 1989, 50, 707.

    Article  CAS  Google Scholar 

  41. S. V. Jovanovic, D. G. Morris, C. N. Pliva, J. C. Scaiano, Laser flash photolysis of dinaphthylketones, J. Photochem. Photobiol., A, 1997, 107, 153.

    Article  CAS  Google Scholar 

  42. D. E. Nicodem, R. S. Silva, D. M. Togashi, M. F. V. Cunha, Solvent effects on the quenching of the equilibrating n,π* and π* triplet states of 9,10-phenanthrenequinone in 2-propanol, J. Photochem. Photobiol., A, 2005, 175, 154.

    Article  CAS  Google Scholar 

  43. J. C. Scaiano, Intramolecular Photoreduction of Ketones, J. Photochem., 1973/74, 2, 81.

    Article  CAS  Google Scholar 

  44. N. J. Turro, J. C. Dalton, K. Dawes, G. Farrington, R. Hautala, D. Morton, M. Niemczyk, N. Schore, Molecular photochemistry of alkanones in solution-α-cleavage, hydrogen abstraction, cycloaddition, and sensitization reactions, Acc. Chem. Res., 1972, 5, 92.

    Article  CAS  Google Scholar 

  45. H. Lutz, E. Breherdt, L. Lindqvist, Effects of solvent and substituents on absorption spectra of triplet acetophenone and acetophenone ketyl radical studied by nanosecond laser photolysis, J. Phys. Chem., 1973, 77, 1758.

    Article  CAS  Google Scholar 

  46. N. C. Yang, R. L. Dusenberg, Correlation between photochemical reactivity and nature of excited states of acetophenone and substituted acetophenones, J. Am. Chem. Soc., 1968, 90, 5899.

    Article  CAS  Google Scholar 

  47. S. Steenken, P. Neta, One-electron redox potentials of phenols-hydroxyphenols and aminophenols and related compounds ob biological interest, J. Am. Chem. Soc., 1982, 86, 3661.

    CAS  Google Scholar 

  48. P. K. Das, M. V. Encinas, J. C. Scaiano, Laser flash photolysis study of the reactions of carbonyl triplets with phenols and photochemistry of p-hydroxypropiophenone, J. Am. Chem. Soc., 1981, 103, 4154.

    Article  CAS  Google Scholar 

  49. N. J. Turro, R. Engel, Quenching of biacetyl fluorescence and phosphorescence, J. Am. Chem. Soc., 1969, 91, 7113.

    Article  CAS  Google Scholar 

  50. L. Biczók, T. Bérces, H. Linschitz, Quenching processes in hydrogen-bonded pairs: interactions of excited fluorenone with alcohols and phenols, J. Am. Chem. Soc., 1997, 119, 11071.

    Article  Google Scholar 

  51. W. J. Leigh, E. C. Lathioor, M. J. St Pierre, Photoinduced hydrogen abstraction from phenols by aromatic ketones. A new mechanism for hydrogen abstraction by carbonyl n,π* and π* triplets, J. Am. Chem. Soc., 1996, 118, 12339.

    Article  CAS  Google Scholar 

  52. M. A. Miranda, A. Lahoz, F. Boscá, M. R. Metni, F. B. Abdelouahab, J. Pérez-Prieto, Regio- and stereo-selectivity in the intramolecular quenching of the excited benzoylthiophene chromophore by triptophan, Chem. Commun., 2000, 2257.

    Google Scholar 

  53. M. A. Miranda, A. Lahoz, R. Matínez-Mañez, F. Boscá, J. V. Castell, J. Pérez-Prieto, Enantioselective discrimination in the intramolecular quenching of an excited aromatic ketone by a ground state phenol, J. Am. Chem. Soc., 1999, 121, 11569.

    Article  CAS  Google Scholar 

  54. N. C. de Lucas, R. J. Correa, A. C. C. Albuquerque, C. L. Firme, S. J. Garden, A. R. Bertoti, J. C. Netto-Ferreira, Laser flash photolysis of 1,2-diketopyracene and a theoretical study of the phenolic hydrogen abstraction by the triplet state of cyclic α-diketones, J. Phys. Chem. A, 2007, 111, 1117.

    Article  PubMed  CAS  Google Scholar 

  55. E. C. Lathioor, W. J. Leigh, Bimolecular hydrogen abstraction from phenols by aromatic ketone triplets, Photochem. Photobiol., 2006, 82, 291.

    Article  CAS  PubMed  Google Scholar 

  56. G. Merényi, J. Lind, X. Shen, Electron-transfer from indoles, phenol, and sulfite (SO3−2) to chlorine dioxide (ClO2), J. Phys. Chem., 1988, 92, 134.

    Article  Google Scholar 

  57. R. H. Schuler, P. Neta, H. Zemel, R. W. Fessenden, Conversion of hydroxyphenyl to phenoxyl radicals-radiolytic study of reduction of bromophenols in aqueous solution, J. Am. Chem. Soc., 1976, 98, 3825.

    Article  CAS  Google Scholar 

  58. J. Pérez-Prieto, F. Boscá, R. E. Galian, A. Lahoz, L. R. Domingo, M. A. Miranda, Photoreaction between 2-benzoylthiophene and phenol or indole, J. Org. Chem., 2003, 68, 5104.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Carlos Netto-Ferreira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Netto-Ferreira, J.C., Bernardes, B., Ferreira, A.B.B. et al. Laser flash photolysis study of the triplet reactivity of β-lapachones. Photochem Photobiol Sci 7, 467–473 (2008). https://doi.org/10.1039/b716104b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b716104b

Navigation