Skip to main content
Log in

Free energy dependence of the diffusion-limited quenching rate constants in photoinduced electron transfer processes

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Electron-transfer rate constants were determined by means of lifetime measurements for the fluorescence quenching of 9,10-dicyanoanthracene by aromatic amines and methoxybenzenes as electron donors, and for the quenching of the synthetic dyes eosin Y and phenosafranine by a series of p-benzoquinones as electron acceptors. All determinations were carried out in acetonitrile at 298 K. The quenching rate constants (kq) in the region of -1.9 eV < ΣGet < -0.2 eV do not decrease as predicted by Marcus theory, but they show a small increase with decreasing ΣGet. Although this behaviour is in qualitative agreement with the current theories for reactive systems in the diffusion limit region, a closer analysis of the experimental data showed that several aspects of the dependence of the kq on ΣGet are not entirely explained, suggesting that new, refined theoretical models may be required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Rehm, A. Weller, Isr. J. Chem., 1970, 8, 259.

    Article  CAS  Google Scholar 

  2. R. A. Marcus, Discuss. Faraday Soc., 1960, 29, 21.

    Article  Google Scholar 

  3. R. A. Marcus, Annu. Rev. Phys. Chem., 1964, 15, 155.

    Article  CAS  Google Scholar 

  4. G. L. Closs, L. T. Calcatera, N. J. Green, K. W. Penfield, J. R. Miller, J. Phys. Chem., 1986, 90, 3673.

    Article  CAS  Google Scholar 

  5. J. R. Miller, J. V. Beitz, J. Chem. Phys., 1981, 74, 6746.

    Article  CAS  Google Scholar 

  6. R. A. Marcus, P. Siders, J. Phys. Chem., 1982, 86, 622.

    Article  CAS  Google Scholar 

  7. A. I. Burshtein, Unified Theory of Photochemical Charge Separation, Adv. Chem. Phys. 2000, 114, 419.

  8. S. A. Rice, Diffusion-Limited Reactions, in Comprehensive Chemical Kinetics, ed. C. F. H. Tipper and R. G. Compton, C. H. Bamford, Elsevier, Amsterdam, 1985, vol. 25, ch. 4

  9. M. Tachiya, S. Murata, J. Phys. Chem., 1992, 96, 8441.

    Article  CAS  Google Scholar 

  10. G. L. Hug, B. Marciniak, J. Phys. Chem., 1995, 99, 1478. and references therein

    Article  CAS  Google Scholar 

  11. S. Murata, M. Tachiya, J. Phys. Chem., 1996, 100, 4064.

    Article  CAS  Google Scholar 

  12. J. Eriksen, C. S. Foote, J. Phys. Chem., 1978, 82, 2659.

    Article  CAS  Google Scholar 

  13. P. Jacques, X. Allonas, Chem. Phys. Lett., 1995, 233, 533.

    Article  CAS  Google Scholar 

  14. X. Allonas, P. Jacques, Chem. Phys., 1997, 215, 371.

    Article  CAS  Google Scholar 

  15. T. Niwa, T. Inada, C. S. Miyazawa, K. Kikuchi, M. Yamauchi, T. Nagata, Y. Takahashi, H. Ikeda, T. Miyashi, J. Am. Chem. Soc., 1999, 121, 7211.

    Article  Google Scholar 

  16. T. Niwa, K. Kikuchi, N. Matsuita, M. Hayashi, T. Katagiri, Y. Takahashi, T. J. Miyashi, Phys. Chem., 1993, 97, 11960.

    Article  CAS  Google Scholar 

  17. S. Murata, S. Y. Matsuzaki, M. Tachiya, J. Phys. Chem., 1995, 99, 5354.

    Article  CAS  Google Scholar 

  18. H. L. Tavernier, M. M. Kalashnikov, M. D. Fayer, J. Chem. Phys., 2000, 113, 10191.

    Article  CAS  Google Scholar 

  19. S. Nishikawa, T. Asahi, T. Okada, N. Mataga, Chem. Phys. Lett., 1991, 185, 237.

    Article  CAS  Google Scholar 

  20. S. N. Guha, P. N. Moorthy, J. P. Mittal, Radiat. Phys. Chem., 1992, 39, 183.

    CAS  Google Scholar 

  21. T. Shen, Z.-G. Zhaq, Q. Yu, H.-J. Xu, J. Photochem. Photoibol., A, 1989, 47, 203.

    Article  CAS  Google Scholar 

  22. Although it is well established that the quenching of all the systems studied takes place through an ET mechanism leading to the formation of free radical ions in solution, other concomitant ET processes (such as the formation of non fluorescent exciplexes, radical ion excited states, etc.) may be also possible. The implications of these alternative reaction channels on the interpretation of the experimental kq have been discussed in detail in ref. 10

  23. S. Fukuzumi, S. Koumitsu, K. Hironaka, T. Tanaka, J. Am. Chem. Soc., 1987, 109, 305.

    Article  CAS  Google Scholar 

  24. H. Kim, N. Kitamura, Y. Kawanishi, Y, S. Tazuke, J. Phys. Chem., 1989, 93, 5757.

    Article  CAS  Google Scholar 

  25. M. F. Broglia, S. G. Bertolotti, C. M. Previtali, J. Photochem. Photobiol., A, 2005, 170, 261.

    Article  CAS  Google Scholar 

  26. M. Smoluchowski, Z. Phys. Chem., 1917, 92, 129.

    Google Scholar 

  27. B. Sipp, R. Voltz, J. Chem. Phys., 1983, 79, 434.

    Article  CAS  Google Scholar 

  28. G. Gamow, Z. Phys., 1928, 51, 204.

    Article  CAS  Google Scholar 

  29. H. M. McConnell, J. Phys. Chem., 1961, 35, 508.

    Article  CAS  Google Scholar 

  30. M. B. Zimmt, D. H. Waldeck, J. Phys. Chem., 2003, 107, 3580.

    Article  CAS  Google Scholar 

  31. Y. Kobori, T. Yago, K. Akiyama, S. Tero-Kobota, H. Sato, F. Hirata, J. R. Norris, Jr., J. Phys. Chem. B, 2004, 108, 10226.

    Article  CAS  Google Scholar 

  32. R. A. Marcus, N. Sutin, Biochim. Biophys. Acta, 1985, 811, 265.

    Article  CAS  Google Scholar 

  33. M. Doi, Chem. Phys., 1975, 11, 115.

    Article  Google Scholar 

  34. Y. H. Zhao, M. H. Abraham, A. M. Zissimos, J. Org. Chem., 2003, 68, 7368.

    Article  CAS  Google Scholar 

  35. S. F. Nelsen, S. C. Blacktock, Y. Kim, J. Am. Chem. Soc., 1987, 109, 677.

    Article  CAS  Google Scholar 

  36. G. Cosa, C. A. Chesta, J. Phys. Chem., 1997, 101, 4922.

    Article  CAS  Google Scholar 

  37. For the systems Eos/A and PS/A different combinations of Vo (between 50-150 cm-1) and ß (2-15 nm-1) were used as fixed parameters for fitting the experimental kq to eqn (12). However, none of the combinations allows reproducing satisfactorily the pronounced slopes of the plots in Fig. 2

  38. I. R. Gould, R. H. Young, L. J. Mueller, S. Farid, J. Am. Chem. Soc., 1994, 116, 8176.

    Article  CAS  Google Scholar 

  39. M. Hilczer, M. Tachiya, J. Mol. Liq., 1995, 64, 113. and references therein

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos A. Chesta.

Additional information

Electronic supplementary information (ESI) available: Chart 1, Fig. 1-4SI, and Tables 1-6SI. See DOI: 10.1039/b708797g

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avila, V., Previtali, C.M. & Chesta, C.A. Free energy dependence of the diffusion-limited quenching rate constants in photoinduced electron transfer processes. Photochem Photobiol Sci 7, 104–108 (2008). https://doi.org/10.1039/b708797g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b708797g

Navigation