Issue 31, 2007

A combined experimental and theoretical study of the reaction between methylglyoxal and OH/OD radical: OH regeneration

Abstract

Experimental studies have been conducted to determine the rate coefficient and mechanism of the reaction between methylglyoxal (CH3COCHO, MGLY) and the OH radical over a wide range of temperatures (233–500 K) and pressures (5–300 Torr). The rate coefficient is pressure independent with the following temperature dependence: k3(T) = (1.83 ± 0.48) × 10–12 exp((560 ± 70)/T) cm3 molecule–1 s–1 (95% uncertainties). Addition of O2 to the system leads to recycling of OH. The mechanism was investigated by varying the experimental conditions ([O2], [MGLY], temperature and pressure), and by modelling based on a G3X potential energy surface, rovibrational prior distribution calculations and master equation RRKM calculations. The mechanism can be described as follows: Addition of oxygen to the system shows that process (4) is fast and that CH3COCO completely dissociates. The acetyl radical formed from reaction (4) reacts with oxygen to regenerate OH radicals (5a). However, a significant fraction of acetyl radical formed by reaction (R4) is sufficiently energised to dissociate further to CH3 + CO (R4b). Little or no pressure quenching of reaction (R4b) was observed. The rate coefficient for OD + MGLY was measured as k9(T) = (9.4 ± 2.4) × 10–13 exp((780 ± 70)/T) cm3 molecule–1 s–1 over the temperature range 233–500 K. The reaction shows a noticeable inverse (kH/kD < 1) kinetic isotope effect below room temperature and a slight normal kinetic isotope effect (kH/kD > 1) at high temperature. The potential atmospheric implications of this work are discussed.

Graphical abstract: A combined experimental and theoretical study of the reaction between methylglyoxal and OH/OD radical: OH regeneration

Article information

Article type
Paper
Submitted
27 Feb 2007
Accepted
01 May 2007
First published
22 May 2007

Phys. Chem. Chem. Phys., 2007,9, 4114-4128

A combined experimental and theoretical study of the reaction between methylglyoxal and OH/OD radical: OH regeneration

M. T. Baeza-Romero, D. R. Glowacki, M. A. Blitz, D. E. Heard, M. J. Pilling, A. R. Rickard and P. W. Seakins, Phys. Chem. Chem. Phys., 2007, 9, 4114 DOI: 10.1039/B702916K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements