Skip to main content

Advertisement

Log in

Charge separation and energy transfer in a caroteno—C60 dyad: photoinduced electron transfer from the carotenoid excited states

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

We have designed and synthesized a molecular dyad comprising a carotenoid pigment linked to a fullerene derivative (C-C60) in which the carotenoid acts both as an antenna for the fullerene and as an electron transfer partner. Ultrafast transient absorption spectroscopy was carried out on the dyad in order to investigate energy transfer and charge separation pathways and efficiencies upon excitation of the carotenoid moiety. When the dyad is dissolved in hexane energy transfer from the carotenoid S2 state to the fullerene takes place on an ultrafast (sub 100 fs) timescale and no intramolecular electron transfer was detected. When the dyad is dissolved in toluene, the excited carotenoid decays from its excited states both by transferring energy to the fullerene and by forming a charge-separated C•+-C60•−. The charge-separated state is also formed from the excited fullerene following energy transfer from the carotenoid. These pathways lead to charge separation on the subpicosecond time scale (possibly from the S2 state and the vibrationally excited S1 state of the carotenoid), on the ps time scale (5.5 ps) from the relaxed S1 state of the carotenoid, and from the excited state of C60 in 23.5 ps. The charge-separated state lives for 1.3 ns and recombines to populate both the low-lying carotenoid triplet state and the dyad ground state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. A. Frank and R. J. Cogdell, Carotenoids in photosynthesis, Photochem. Photobiol., 1996, 63, 257–264.

    Article  CAS  Google Scholar 

  2. T. Polívka, V. Sundström, Ultrafast dynamics of carotenoid excited states—from solution to natural and artificial systems, Chem. Rev., 2004, 104, 2021–2071.

    Article  Google Scholar 

  3. N. E. Holt, G. R. Fleming and K. K. Niyogi, Toward an understanding of the mechanism of nonphotochemical quenching in green plants, Biochemistry, 2004, 43, 8281–8289.

    Article  CAS  Google Scholar 

  4. N. E. Holt, D. Zigmantas, L. Valkunas, X. P. Li, K. K. Niyogi and G. R. Fleming, Carotenoid cation formation and the regulation of photosynthetic light harvesting, Science, 2005, 307, 433–436.

    Article  CAS  Google Scholar 

  5. R. Berera, C. Herrero, I. H. M. van Stokkum, M. Vengris, G. Kodis, R. E. Palacios, H. van Amerongen, R. van Grondelle, D. Gust, T. A. Moore, A. L. Moore, J. T. M. Kennis, A simple artificial light-harvesting dyad as a model for excess energy dissipation in oxygenic photosynthesis, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 5343–5348.

    Article  CAS  Google Scholar 

  6. J. S. Vretos, D. H. Steward, J. D. de Paula and G. W. Brudvig, Low-temperature optical and resonance Raman spectra of a carotenoid cation radical in photosystem II, J. Phys. Chem. B, 1999, 103, 6403–6406.

    Article  Google Scholar 

  7. P. Faller, A. Pascal and A. W. Rutherford, ß-Carotene redox reactions in photosystem II: electron transfer pathway, Biochemistry, 2001, 40, 6431–6440.

    Article  CAS  Google Scholar 

  8. P. A. Liddell, J. P. Sumida, A. N. Macpherson, L. Noss, G. R. Seely, K. N. Clark, A. L. Moore, T. A. Moore and D. Gust, Preparation and photophysical studies of porphyrin C-60 dyads, Photochem. Photobiol., 1994, 60, 537–541.

    Article  CAS  Google Scholar 

  9. R. M. Williams, J. M. Zwier and J. W. Verhoeven, Photoinduced intramolecular electron-transfer in a bridged C60 (acceptor) aniline (donor) system-photophysical properties of the first active fullerene diad, J. Am. Chem. Soc., 1995, 117, 4093–4099.

    Article  CAS  Google Scholar 

  10. D. Kuciauskas, P. A. Liddell, S. Lin, S. G. Stone, A. L. Moore, T. A. Moore and D. Gust, Photoinduced electron transfer in carotenoporphyrin–fullerene triads: temperature and solvent effects, J. Phys. Chem. B, 2000, 104, 4307–4321.

    Article  CAS  Google Scholar 

  11. D. M. Guldi, Fullerene-porphyrin architectures; photosynthetic antenna and reaction center models, Chem. Soc. Rev., 2002, 31, 22–36.

    Article  CAS  Google Scholar 

  12. H. Imahori, K. Hagiwara, T. Akiyama, M. Aoki, S. Taniguchi, T. Okada, M. Shirakawa and Y. Sakata, The small reorganization energy of C-60 in electron transfer, Chem. Phys. Lett., 1996, 263, 545–550.

    Article  CAS  Google Scholar 

  13. D. Gust, T. A. Moore and A. L. Moore, Mimicking photosynthetic solar energy transduction, Acc. Chem. Res., 2001, 34, 40–48.

    CAS  PubMed  Google Scholar 

  14. C. C. Gradinaru, I. H. M. van Stokkum, A. A. Pascal, R. van Grondelle and H. van Amerongen, Identifying the pathways of energy transfer between carotenoids and chlorophylls in LHCII and CP29. A multicolor, femtosecond pump–probe study, J. Phys. Chem. B, 2000, 104, 9330–9342.

    Article  CAS  Google Scholar 

  15. I. H. M. van Stokkum, D. S. Larsen and R. van Grondelle, Global and target analysis of time-resolved spectra, Biochim. Biophys. Acta, 2004, 1657, 82–104.

    Article  Google Scholar 

  16. D. Gust, T. A. Moore, A. L. Moore and P. A. Liddell, Synthesis of carotenoporphyrin models for photosynthetic energy and electron-transfer, Methods Enzymol., 1992, 213, 87–100.

    Article  CAS  Google Scholar 

  17. H. H. Billsten, D. Zigmantas, V. Sundström, T. Polívka, Dynamics of vibrational relaxation in the S1 state of carotenoids having 11 conjugated C?C bonds, Chem. Phys. Lett., 2002, 355, 465–470.

    Article  Google Scholar 

  18. F. L. de Weerd, I. H. M. van Stokkum and R. van Grondelle, Subpicosecond dynamics in the excited state absorption of all-trans-ß-Carotene, Chem. Phys. Lett., 2002, 354, 38–43.

    Article  Google Scholar 

  19. R. J. Cogdell, E. J. Land and T. G. Truscott, The triplet extinction coefficients of some bacterial carotenoids, Photochem. Photobiol., 1983, 38, 723–725.

    Article  CAS  Google Scholar 

  20. B. R. Nielsen, K. J?rgensen and L. H. Skibsted, Triplet–triplet extinction coefficients, rate constants of triplet decay and rate constants of antracene triplet sensitization by laser flash photolysis of astaxanthin, ß-carotene, canthaxanthin and zeaxanthin in deaerated toluene at 298 K, J. Photochem. Photobiol., A, 1998, 112, 127–133.

    Article  CAS  Google Scholar 

  21. E. Papagiannakis, I. H. M. van Stokkum, R. van Grondelle, R. A. Niederman, D. Zigmantas, V. Sundström, T. Polívka, A near-infrared transient absorption study of the excited-state dynamics of the carotenoid spirilloxanthin in solution and in the LH1 complex of Rhodospirillum rubrum, J. Phys. Chem. B, 2003, 107, 11216–11223.

    Article  CAS  Google Scholar 

  22. E. J. Land, D. Lexa, R. V. Bensasson, D. Gust, T. A. Moore, A. L. Moore, P. A. Liddell and G. A. Nemeth, Pulse radiolytic and electrochemical investigations of intramolecular electron-transfer in carotenoporphyrins and carotenoporphyrin quinone triads, J. Phys. Chem., 1987, 91, 4831–4835.

    Article  CAS  Google Scholar 

  23. M. A. Greaney and S. M. Gorun, Production, spectroscopy, and electronic structure of soluble fullerene ions, J. Phys. Chem., 1991, 95, 7142–7144.

    Article  CAS  Google Scholar 

  24. E. Papagiannakis, J. T. M. Kennis, I. H. M. van Stokkum, R. J. Cogdell and R. van Grondelle, An alternative carotenoid-to-bacteriochlorophyll energy transfer pathway in photosynthetic light harvesting, Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 6017–6022.

    Article  CAS  Google Scholar 

  25. G. Kodis, C. Herrero, R. Palacios, E. Marino-Ochoa, S. Gould, L. de la Garza, R. van Grondelle, D. Gust, T. A. Moore, A. L. Moore, J. T. M. Kennis, Light harvesting and photoprotective functions of carotenoids in compact artificial photosynthetic antenna designs, J. Phys. Chem. B, 2004, 108, 414–425.

    Article  CAS  Google Scholar 

  26. G. D. Scholes, X. J. Jordanides and G. R. Fleming, Adapting the Förster theory of energy transfer for modeling dynamics in aggregated molecular assemblies, J. Phys. Chem. B, 2001, 105, 1640–1651.

    Article  CAS  Google Scholar 

  27. N. E. Holt, J. T. M. Kennis and G. R. Fleming, Femtosecond fluorescence upconversion studies of light harvesting by ß-carotene in oxygenic photosynthetic core proteins, J. Phys. Chem. B, 2004, 108, 19029–19035.

    Article  CAS  Google Scholar 

  28. J. Pan, G. Benko, Y. H. Xu, T. Pascher, L. Sun, V. Sundström, T. Polívka, Photoinduced electron transfer between a carotenoid and TiO2 nanoparticle, J. Am. Chem. Soc., 2002, 124, 13949–13957.

    Article  CAS  Google Scholar 

  29. H. Imahori, S. Cardoso, D. Tatman, S. Lin, L. Noss, G. R. Seely, L. Sereno, J. C. de Silber, T. A. Moore, A. L. Moore and D. Gust, Photoinduced electron transfer in a carotenobuckminsterfullerene dyad, Photochem. Photobiol., 1995, 62, 1009–1014.

    Article  CAS  Google Scholar 

  30. R. M. Hermant, P. A. Liddell, S. Lin, R. G. Alden, H. K. Kang, A. L. Moore, T. A. Moore and D. Gust, Mimicking carotenoid quenching of chlorophyll fluorescence, J. Am. Chem. Soc., 1993, 115, 2080–2081.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to John T. M. Kennis, Devens Gust, Thomas A. Moore or Ana L. Moore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berera, R., Moore, G.F., van Stokkum, I.H.M. et al. Charge separation and energy transfer in a caroteno—C60 dyad: photoinduced electron transfer from the carotenoid excited states. Photochem Photobiol Sci 5, 1142–1149 (2006). https://doi.org/10.1039/b613971j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b613971j

Navigation