Skip to main content
Log in

Photophysicochemical consequences of bovine serum albumin binding to non-transition metal phthalocyanine sulfonates

  • Full Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The interactions between bovine serum albumin (BSA) and sulfonated metallophthalocyanine (MPc) complexes of aluminum (AlPcSmix), zinc (ZnPcSmix), silicon (SiPcSmix), germanium (GePcSmix) and tin (SnPcSmix) are studied using fluorescence quenching of BSA by MPc complexes. The fluorescence quantum yields of the non-aggregated MPc complexes (AlPcSmix, GePcSmix and SiPcSmix) decreased in the presence of BSA, but increased for the aggregated ZnPcSmix and SnPcSmix complexes. The BSA: MPc conjugates were less stable than the corresponding MPc complexes. The quenching constants were much higher for the non-aggregated complexes. The aggregated nature of the complexes also affected the rate constants (kF, kIC, kISC) for the deactivation of the excited singlet state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. A. Kuznetsova, N. S. Gretsova, V. M. Derkacheva, O. L. Kaliya, E. A. Luk’yanets, Sulfonated phthalocyanines: aggregation and singlet oxygen quantum yield in aqueous solutions, J. Porphyrins Phthalocyanines, 2003, 7, 147–154.

    Article  CAS  Google Scholar 

  2. R. Edrei, V. Gottfried, J. E. Van Lier, S. Kimel, Sulfonated phthalocyanines: photophysical properties, in vitro cell uptake and structure-activity relationships, J. Porphyrins Phthalocyanines, 1998, 2, 191–199.

    Article  CAS  Google Scholar 

  3. J. D. Spikes, Phtalocyanines as photosensitizers in biological systems and for the photodynamic therapy of tumors, Photochem. Photobiol., 1986, 43, 691–699.

    Article  CAS  Google Scholar 

  4. D. Silva, C. M. Cortez, S. R. W. Louro, Quenching of the intrinsic fluorescence of bovine serum albumin by chlorpromazine and hemin, Braz. J. Med. Biol. Res., 2004, 37, 963–968.

    Article  CAS  Google Scholar 

  5. E. L. Gelamo, M. Tabak, Spectroscopic studies on the interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants, Spectrochim. Acta, 2000, 56, 2255–2271.

    Article  Google Scholar 

  6. G. Ming, J. W. Zou, P. G. Yi, Z. C. Shang, G. X. Hu, Q. S. Yu, Binding interaction of gatifloxacin with bovine serum albumin, Anal. Sci., 2004, 20, 465–470.

    Article  Google Scholar 

  7. A. K. Bordbar, A. Eslami, S. Tangestaninejad, Spectral investigations of the solution properties of 5,10,15,20-tetrakis(4-N-benzyl-pyridyl)porphyrin (TBzPyP) and its interaction with human serum albumin (HSA), J. Porphyrins Phthalocyanines, 2002, 6, 225–232.

    Article  CAS  Google Scholar 

  8. A. K. Bordbar, S. Tangestaninejad, A. Eslami, Optical absorption spectroscopy study on the interaction of 5,10,15,20-tetrakis(4-N-benzyl-pyridyl)porphyrin with human serum albumin, J. Biochem., Mol. Biol. Biophys., 2001, 5, 143–152.

    CAS  Google Scholar 

  9. T. T. Tominaga, V. E. Yushmanov, I. E. Borissevitch, H. Imasato, M. Tabak, Aggregation phenomena in the complexes of iron tetraphenylporphine sulfonate with bovine serum albumin, J. Inorg. Biochem., 1997, 65, 235–244.

    Article  CAS  Google Scholar 

  10. I. E. Borissevitch, T. T. Tominaga, H. Imasoto, M. Tabak, Fluorescence and optical absorption study of interaction of two water soluble porphyrins with bovine serum albumin. The role of albumin and porphyrin aggregation, J. Lumin., 1996, 69, 65–76.

    Article  CAS  Google Scholar 

  11. D. C. Carter, J. X. Ho, Structure of serum albumin, Adv. Protein Chem., 1994, 45, 153–203.

    Article  CAS  Google Scholar 

  12. B. M. Aveline, T. Hasan, R. W. Redmond, The effects of aggregation, protein binding, and cellular incorporation on the photophysical properties of benzoporphyrin derivative monoacid ring A (BPDMA), J. Photochem. Photobiol. B: Biol., 1995, 30, 161–169.

    Article  CAS  Google Scholar 

  13. J.-D. Huang, S. Wang, P.-C. Lo, W.-P. Fong, W.-H. Ko, D. K. P. Ng, Halogenated silicon(iv) phthalocyanines with axial poly(ethylene glycol) chains. Synthesis, spectroscopy properties, complexation with bovine albumin and in vitro photodynamic activities, New J. Chem., 2004, 28, 348–354.

    Article  CAS  Google Scholar 

  14. X.-L. Chen, D.-H. Li, Q.-Z. Zhu, H.-H. Yang, H. Zheng, Z.-H. Wang, J.-G. Xu, Determination of proteins at nanogram levels by resonance light-scattering technique with tetra-substituted sulfonated aluminium phthalocyanine, Talanta, 2001, 53, 1205–1210.

    Article  CAS  Google Scholar 

  15. B. Xie, J. Huang, J. Xue, N. Chen, J. Huang, Combining interaction of amphiphilic phthalocyanine zinc with bovine serum albumin, Fenxi Huaxue, 2003, 31, 1159–1163.

    CAS  Google Scholar 

  16. I. Rosenthal, V. Y. Shafirovich, N. E. Geacintov, E. Ben Hur, B. Horowitz, The photochemical properties of fluoroaluminum phthalocyanine, Photochem. Photobiol., 1994, 60, 215–220.

    Article  CAS  Google Scholar 

  17. K. Ozoemena, N. Kuznetsova, T. Nyokong, Comparative photosensitised transformation of polychlorophenols with different sulfonated metallophthalocyanine complexes in aqueous medium, J. Mol. Cat. A: Chem., 2001, 176, 29–40.

    Article  CAS  Google Scholar 

  18. M. Ambroz, A. Beeby, A. J. McRobert, M. S. C. Simpson, R. K. Svensen, D. Phillips, Preparative, analytical and fluorescence spectroscopic studies of sulfonated aluminium phthalocyanine photosensitizers, J. Photochem. Photobiol. B: Biol., 1991, 9, 87–95.

    Article  CAS  Google Scholar 

  19. C. W. Dirk, T. Inabe, K. F. Schoch, Jr., T. J. Marks, Cofacial assembly of partially oxidized metallamacrocycles as an approach to controlling lattice architecture in low-dimensional molecular solids. Chemical and architectural properties of the “face-to-face” polymers [M(phthalocyaninato)O]n, where M = Si, Ge, and Sn, J. Am. Chem. Soc., 1983, 105, 1539–1550.

    Article  CAS  Google Scholar 

  20. A. Ogunsipe, J. Y. Chen, T. Nyokong, Photophysical and photochemical studies of zinc(ii) phthalocyanine derivatives-effects of substituents and solvents, New J. Chem., 2004, 7, 822–827.

    Article  Google Scholar 

  21. I. Seotsanyana-Mokhosi, N. Kuznetsova, T. Nyokong, Photochemical studies of tetra-2,3-pyridinoporphyrazines, J. Photochem. Photobiol., 2001, 140, 215–222.

    Article  CAS  Google Scholar 

  22. A. Ogunsipe, T. Nyokong, Effects of substituents and solvents on the photochemical properties of zinc phthalocyanine complexes and their protonated derivatives, J. Mol. Struct., 2004, 689, 89–97.

    Article  CAS  Google Scholar 

  23. S. Fery-Forgues, D. Lavabre, Are fluorescence quantum yields so tricky to measure? A demonstration using familiar stationery products, J. Chem. Educ., 1999, 76, 1260–1264.

    Article  CAS  Google Scholar 

  24. J. Fu, X. Y. Li, D. K. P. Ng, C. Wu, Encapsulation of Phthalocyanines in Biodegradable Poly(sebacic anhydride) Nanoparticles, Langmuir, 2002, 18, 3843–3847.

    Article  CAS  Google Scholar 

  25. A. Montalban, H. Meunier, R. Ostler, A. Barrett, B. Hoffman, G. Rumbles, Photoperoxidation of a Diamino Zinc Porphyrazine to the seco-Zinc Porphyrazine: Suicide or Murder, J. Phys. Chem. A, 1999, 103, 4352–4358.

    Article  CAS  Google Scholar 

  26. J. H. Brannon, D. Magde, Picosecond laser photophysics, group 3A phthalocyanines, J. Am. Chem. Soc., 1980, 102, 62–65.

    Article  CAS  Google Scholar 

  27. A. Harriman, M. C. Richoux, Attempted photoreduction of hydrogen using sulfophthalocyanines as chromophores for three-component systems, J. Chem. Soc., Faraday Trans. 2, 1980, 76, 1618–1626.

    Article  CAS  Google Scholar 

  28. S. M. T. Nunes, F. S. Sguilla, A. C. Tedesco, Photophysical studies of zinc phthalocyanine and chloroaluminum phthalocyanine incorporated into liposome in the presence of additives, Braz. J. Med. Biol. Res., 2004, 37, 273–284.

    Article  CAS  Google Scholar 

  29. S. Lehrer, G. D. Fashman, The fluorescence of lysozyme and lysozyme substrate complexes, Biochem. Biophys. Res. Commun., 1966, 23, 133–138.

    Article  CAS  Google Scholar 

  30. D. M. Chipman, V. Grisaro, N. Shanon, The binding of oligosaccharides containing N-acetylglucosamine and N-acetylmaramic acid to lysozyme, J. Biol. Chem., 1967, 242, 4388–4394.

    Article  CAS  Google Scholar 

  31. A. Ogunsipe, T. Nyokong, Effects of central metal on the photophysical and photochemical properties of non-transition metal sulfophthalocyanines, J. Porphyrins Phthalocyanines, 2005, 9, 121–129.

    Article  CAS  Google Scholar 

  32. A. Ogunsipe, T. Nyokong, Photophysical and photochemical studies of sulfonated non-transition metal phthalocyanines in aqueous and non-aqueous media, J. Photochem. Photobiol. A: Chem. 10.1016/J.Photochem.2005.03.001.

  33. K. Tabata, K. Fukushima, K. Oda, I. Okura, Selective aggregation of zinc phthalocyanine in the skin, J. Porphyrins Phthalocyanines, 2000, 4, 278–284.

    Article  CAS  Google Scholar 

  34. D. J. Ball, S. R. Wood, D. I. Vernon, J. Griffiths, T. M. Dubbleman, S. B. Brown, The characteristics of three substituted zinc phthalocyanines of differing charge for use in photodynamic therapy. A comparative study of their aggregation and photosensitizing ability in relation to mTHPC and polyhaematoporphyrin, J. Photochem. Photobiol. B: Biol., 1998, 45, 28–35.

    Article  CAS  Google Scholar 

  35. G. Valduga, E. Reddi, G. Jori, Spectroscopic studies on zinc(ii) phthalocyanine in homogeneous and microheterogeneous systems, J. Inorg. Biochem., 1987, 29, 59–65.

    Article  CAS  Google Scholar 

  36. V. Levi, F. L. G. Flecha, Labelling of proteins with fluorescent probes, photophysical characterization of dansylated bovine serum albumin, Biochem. Mol. Biol. Educ., 2003, 31, 333–336.

    Article  CAS  Google Scholar 

  37. G. Schnurpfeil, A. K. Sobbi, W. Spiller, H. Kliesch, D. Wöhrle, Photo-oxidative stability and its correlation with semi-empirical MO calculations of various tetraazaporphyrin derivatives in solution, J. Porphyrins Phthalocyanines, 1997, 1, 159–167.

    Article  CAS  Google Scholar 

  38. M. J. Davies, Reactive species formed on proteins exposed to singlet oxygen, Photochem. Photobiol. Sci., 2004, 3, 17–25.

    Article  CAS  Google Scholar 

  39. A. I. Filyasova, I. A. Kudelina, A. V. Feofanov, A spectroscopic study of the interaction of tetrasulfonated aluminum phthalocyanines with human serum albumin, J. Mol. Struct., 2001, 565–566, 173–176.

    Article  Google Scholar 

  40. S. L. Murov, I. Carmichael and G. L. Hug, in Handbook of Photochemistry, Marcel Decker, New York, 2nd edn., 1993, p. 207.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogunsipe, A., Nyokong, T. Photophysicochemical consequences of bovine serum albumin binding to non-transition metal phthalocyanine sulfonates. Photochem Photobiol Sci 4, 510–516 (2005). https://doi.org/10.1039/b416304d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b416304d

Navigation