Skip to main content
Log in

Photochemical α-cleavage of ketones: revisiting acetone

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The photochemical α-cleavage of acetone is analyzed in view of recent results obtained for the isolated molecule in supersonic jets. The fluorescence decay time of the isolated molecule spans a range of more than six orders of magnitude, from ∼10−6 s near the origin of the S0–S1 transition to less than 10−12 s at about 20 kcal mol−1 excess energy. In contrast, the decay time of the excited singlet (S1, 1nπ*) in the bulk is around 10−9 s and independent of excitation wavelength. Initial excitation to the 1nπ* state is followed by internal conversion (IC) to the ground state and intersystem crossing to the lowest-lying triplet. The rate constants of these processes are comparable to the radiative decay rate constant for excess energy up to 7 kcal mol−1 above the origin of the S0-S1 transition. Beyond that energy, the triplet state becomes dissociative and the ISC rate becomes much larger than other processes depleting S1. The primary reaction on the triplet surface is a barrier-controlled α-cleavage to form the triplet radical pair CH3˙ + CH3CO˙. Direct reaction from the S1 is negligible, and the non-quenchable reaction (by triplet quenchers) observed in the bulk gas phase is due to hot triplet molecules that dissociate on the timescale of 10−12 s or less. The singlet-state decay time measured in the bulk (∼1–2 ns) arises from collision-induced processes that populate low-lying levels of S1. The analysis is aided by detailed state-resolved studies on related molecules (in particular formaldehyde and acetaldehyde) whose photophysics and photochemistry parallel those of acetone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. G. Calvert and J. N. Pitts, Photochemistry, Wiley, New York, 1966, p. 379.

    Google Scholar 

  2. J. A. Kerr and M. J. Patronage, Evaluated Kinetic Data on Gas Phase Hydrogen Transfer Reactions of Methyl Radicals, Butterworth, London, 1976, p. 171., cited by: S. H. Mousavipour, P. D. Pacey, Initiation and abstraction reactions in the pyrolysis of acetone, J. Phys. Chem., 1996, 100, 3593.

    Google Scholar 

  3. R. G. W. Norrish, H. G. Crone and O. D. Saltmarsh, Primary photochemical reactions. Part V. The spectroscopy and photochemical decomposition of acetone, J. Chem. Soc., 1934, 1456.

    Google Scholar 

  4. A. Noyes, Jr., G. B. Porter and E. Jolley, The primary photochemical process in simple ketones, Chem. Rev., 1956, 56, 49.

    Article  CAS  Google Scholar 

  5. P. J. Wagner, Chemistry of excited triplet organic carbonyl compounds, Curr. Top. Chem., 1976, 66, 1.

    Article  CAS  Google Scholar 

  6. N. J. Turro, Modern Molecular Photochemistry, Benjamin/Cummings, Menlo Park, CA, 1978.

    Google Scholar 

  7. R. G. W. Norrish, The primary photochemical production of some free radicals, Trans. Faraday Soc., 1934, 30, 103.

    Article  CAS  Google Scholar 

  8. R. G. W. Norrish and F. W. Kirkbride, Primary photochemical reactions. Part I. The decomposition of formaldehyde, J. Chem. Soc., 1932, 1518.

    Google Scholar 

  9. A. Horowitz, C. J. Karshner and J. G. Calvert, Primary processes in the photolysis of acetaldehyde at 3000 Å and 25 °C, J. Phys. Chem., 1982, 86, 3094.

    Article  CAS  Google Scholar 

  10. P. D. Lightfoot, S. P. Kirwan and M. J. Pilling, Photolysis of acetone at 193.3 nm, J. Phys. Chem., 1988, 92, 4938.

    Article  CAS  Google Scholar 

  11. S. W. North, D. A. Blank, J. D. Gezelter, C. A. Longfellow and Y. T. Lee, Evidence for stepwise dissociation dynamics in acetone at 248 and 193 nm, J. Chem. Phys., 1995, 102, 4447.

    Article  CAS  Google Scholar 

  12. F. O. Rice and K. F. Herzfeld, The thermal decomposition of organic compounds from the standpoint of free radicals. VI. The mechanism of some chain reactions, J. Am. Chem. Soc., 1934, 284.

    Google Scholar 

  13. E. J. Bowen, E. L. A. E. de la Praudiere, The photoreactions of liquid and dissolved ketones, part I, J. Chem. Soc., 1934, 1503.

    Google Scholar 

  14. P. E. Frankenberg and W. A. Noyes, Photochemical studies, XLVII. Liquid acetone-oxygen and liquid acetone-heptane-oxygen, J. Am. Chem. Soc., 1953, 75, 2847.

    Article  Google Scholar 

  15. G. S. Hammond and N. J. Turro, Organic photochemistry, Science, 1963, 142, 1541.

    Article  CAS  PubMed  Google Scholar 

  16. W. A. Watkins and W. M. Word, Addition of methyl radicals to carbon monoxide: chemically and thermally activated decomposition of acetyl radical, Int. J. Chem. Kinet., 1974, 6, 855.

    Article  CAS  Google Scholar 

  17. R. C. Ferris and S. Haynes, Formation of ketene in the photolysis of acetone, J. Am. Chem. Soc., 1950, 72, 893.

    Article  CAS  Google Scholar 

  18. C. B. Moore and J. C. Weisshaar, Radiative, collisional and dissociative processes in triplet acetone, Annu. Rev. Phys. Chem., 1983, 34, 525.

    Article  CAS  Google Scholar 

  19. C. B. Moore, I. W. M. Smith, State-resolved studies of reactions in the gas phase, Centennial Issue, J. Phys. Chem., 1996, 100, 12-848.

    Article  CAS  Google Scholar 

  20. CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, 60th edn., 1980, p. F-232.

  21. M. Baba, I. Hanazaki and U. Nagashima, The S1(n, *) states of acetaldehyde and acetone in supersonic nozzle beam: methyl internal rotation and CO out-of-plane wagging, J. Chem. Phys., 1985, 82, 3938.

    Article  CAS  Google Scholar 

  22. L. D. Waits, R. J. Horwitz and J. A. Guest, Translational energy study of CH3 photofragments following (n, π*) excitation of acetone, Chem. Phys., 1991, 155, 149.

    Article  CAS  Google Scholar 

  23. H. Zuckermann, B. Schmitz and Y. Haas, Acetone photophysics in seeded supersonic molecular beams, J. Phys. Chem., 1989, 93, 4083.

    Article  CAS  Google Scholar 

  24. J. Heicklen, W. A. Noyes, Jr., The photolysis and fluorescence of acetone and acetone-biacetyl mixtures, J. Am. Chem. Soc., 1959, 81, 3858.

    Article  CAS  Google Scholar 

  25. G. H. Damon and F. Daniels, The photolysis of gaseous acetone and the influence of water, J. Am. Chem. Soc., 1933, 35, 2363.

    Article  Google Scholar 

  26. M. E. S. Appleyard, R. G. W. Norrish, J. Chem. Soc., 1934, 1456.

    Google Scholar 

  27. S. P. Vaish, R. D. McAlpine and M. Cocivera, Photochemistry of acetone in liquid phase studied by CIDNP [chemically induced dynamic nuclear polarization], J. Am. Chem. Soc., 1974, 96, 1683.

    Article  CAS  Google Scholar 

  28. H. Schuh, E. J. Hamilton, H. Paul and H. Fisher, Reaction rates of t-butyl and pyvaloyl radicals in solution, Helv. Chim. Acta, 1974, 57, 2011.

    Article  CAS  Google Scholar 

  29. K. Muller and G. L. Closs, Effect of nuclear spin relaxation on intensity pattern of multiplet spectra in chemically induced dynamic nuclear polarization, J. Am. Chem. Soc., 1972, 94, 1002.

    Article  Google Scholar 

  30. G. L. Closs and C. E. Doubleday, Chemically induced dynamic nuclear spin polarization derived from biradicals generated by photochemical cleavage of cyclic ketones, and the observation of a solvent effect on signal intensities, J. Am. Chem. Soc., 1972, 94, 9248.

    Article  CAS  Google Scholar 

  31. M. Tomkiewicz, A. Goren and M. Cocivera, Nuclear spin polarization during the photolysis of di-t-butyl ketone, J. Chem. Phys., 1972, 56, 5850.

    Article  CAS  Google Scholar 

  32. A. Gilbert and J. Baggot, Essentials of Molecular Photochemistry, CRC Press, Boca Raton, 1991.

    Google Scholar 

  33. M. Klessinger and J. Michl, Excited States and Photochemistry of Organic Molecules, VCH, New York, 1995.

    Google Scholar 

  34. F. Bernardi, M. Olivucci and M. A. Robb, Predicting forbidden and allowed cycloaddition reactions: potential surface topology and its rationalization, Acc. Chem. Res., 1990, 23, 405.

    Article  CAS  Google Scholar 

  35. S. Zilberg and Y. Haas, Conical intersections in molecular photochemistry–the role of phase change, Chem. Phys., 2000, 259, 249.

    Article  CAS  Google Scholar 

  36. G. N. Lewis and M. Kasha, Phosphorescence and the triplet state, J. Am. Chem. Soc., 1944, 66, 2100.

    Article  CAS  Google Scholar 

  37. G. Porter and M. Windsor, The triplet state in fluid media, Proc. R. Soc. London, Ser. A, 1958, 245, 238.

    Article  Google Scholar 

  38. G. S. Hammond, N. J. Turro and P. A. Leermakers, The mechanisms of photoreactions in solution. IX. Energy transfer from the triplet states of aldehydes and ketones to unsaturated compounds, J. Phys. Chem., 1962, 66, 1144.

    Article  CAS  Google Scholar 

  39. V. Sethuraman and K. K. Innes, The 3500 Å A1A2–X1A1 transition of formaldehyde h2, d2 and hd, J. Mol. Spectrosc., 1969, 30, 365.

    Article  Google Scholar 

  40. D. J. Clouthier and D. A. Ramsay, The spectroscopy of formaldehyde and thioformaldehyde, Annu. Rev. Phys. Chem., 1983, 34, 31.

    Article  CAS  Google Scholar 

  41. R. E. Rebbert and P. Ausloos, Triplet-state energy transfer from acetone to aliphatic aldehydes in the gas phase, J. Am. Chem. Soc., 1964, 86, 4803.

    Article  CAS  Google Scholar 

  42. R. F. Borkman and D. R. Kearns, Electronic relaxation processes in acetone, J. Chem. Phys., 1966, 44, 945.

    Article  CAS  Google Scholar 

  43. M. A. El-Sayed, Spin–orbit coupling and the radiationless processes in nitrogen heterocyclics, J. Chem. Phys., 1963, 38, 2834.

    Article  CAS  Google Scholar 

  44. C. W. Larson, H. E. O’Neal, The gas phase photolysis of acetone at 3130 Å in the presence of hydrogen bromide. A study of the primary photochemical decomposition processes of acetone, J. Phys. Chem., 1966, 70, 2475.

    Article  CAS  Google Scholar 

  45. R. B. Cundall and A. S. Davis, The mechanism of the gas phase photolysis of acetone, Proc. R. Soc. London, Ser. A, 1966, 290, 563.

    Article  CAS  Google Scholar 

  46. L. Salem, Surface crossings, and surface touchings in photochemistry, J. Am. Chem. Soc., 1974, 96, 3486.

    Article  CAS  Google Scholar 

  47. W. G. Dauben, L. Salem and N. J. Turro, Classification of photochemical reactions, Acc. Chem. Res., 1975, 8, 41.

    Article  CAS  Google Scholar 

  48. N. J. Turro, W. E. Farneth and A. Devaquet, Salem diagrams as a device for the elucidation of photochemical reaction mechanisms. Applications to the cleavage of cyclic alkanones, J. Am. Chem. Soc., 1976, 98, 7425.

    Article  CAS  Google Scholar 

  49. H. E. O’Neal and C. W. Larson, Primary processes in the acetone photochemical system, J. Phys. Chem., 1969, 73, 1011.

    Article  Google Scholar 

  50. A. M. Halpern and W. R. Ware, Excited singlet radiative and nonradiative transition probabilities for acetone, acetone-d6, and hexafluoroacetone in the gas phase, in solution and in the neat liquid, J. Chem. Phys., 1971, 54, 1271.

    Article  CAS  Google Scholar 

  51. G. M. Breuer, E. K. C. Lee, Fluorescence decay times of cyclic ketones, acetone, and butanal in the gas phase, J. Phys. Chem., 1971, 75, 989.

    Article  CAS  Google Scholar 

  52. D. A. Hansen, E. K. C. Lee, Radiative and nonradiative transitions in the first excited singlet state of symmetrical methyl-substituted acetones, J. Chem. Phys., 1975, 62, 183.

    Article  CAS  Google Scholar 

  53. F. S. Wettack, G. D. Renkes, M. G. Rockley, N. J. Turro and J. C. Dalton, Quenching of alkyl ketone fluorescence by 1,3-dienes, J. Am. Chem. Soc., 1970, 92, 1793.

    Article  CAS  Google Scholar 

  54. N. C. Yang, E. D. Feit, M. H. Hui, N. J. Turro, and J. C. Dalton, Photochemistry of di-tert-butyl ketone and structural effects on the rate and efficiency of intersystem crossing of aliphatic ketones, J. Am. Chem. Soc., 1970, 92, 6974.

    Article  CAS  Google Scholar 

  55. J. C. Dalton, K. Dawes, N. J. Turro, D. S. Weiss, J. A. Barltrop, J. D. Coyle and J. Molecular, Photochemistry. XLVIII. Type I and type II photochemical reactions of some five- and six-membered cycloalkanones, J. Am. Chem. Soc., 1971, 93, 7213.

    Article  CAS  Google Scholar 

  56. S. J. Strickler and R. A. Berg, Relationship between absorption intensity and fluorescence lifetime of molecules, J. Chem. Phys., 1962, 37, 814.

    Article  CAS  Google Scholar 

  57. E. K. C. Lee and R. S. Lewis, Photochemistry of simple aldehydes and ketones in the gas phase, Adv. Photochem., 1980, 12, 1.

    Article  CAS  Google Scholar 

  58. G. D. Greenblat, S. Ruhman and Y. Haas, Fluorescence decay kinetics of acetone vapor at low pressures, Chem. Phys. Lett., 1984, 112, 200.

    Article  Google Scholar 

  59. H. Zuckermann, Y. Haas, M. Drabbels, J. Heinze, W. L. Meerts, J. Reuss, J. van Bladel, Acetone, a laser-induced fluorescence study with rotational resolution at 320 nm, Chem. Phys., 1992, 163, 193.

    Article  CAS  Google Scholar 

  60. O. Anner, H. Zuckermann and Y. Haas, Fluorescence decay of jet-cooled acetone, J. Phys. Chem., 1985, 89, 1336.

    Article  CAS  Google Scholar 

  61. Y. Haas and H. Zuckermann, Photodynamics of small aliphatic ketones in a supersonic jet expansion, Isr. J. Chem., 1989, 29, 405.

    Article  CAS  Google Scholar 

  62. R. D. Levine and R. B. Bernstein, Molecular Reaction Dynamics, Oxford University Press, Oxford, 1974, ch. 5.

    Google Scholar 

  63. G. W. Robinson and R. P. Frosch, Electronic excitation transfer and relaxation, J. Chem. Phys., 1962, 38, 1187.

    Article  Google Scholar 

  64. W. Siebrand, Radiationless transitions in polyatomic molecules. I. Calculation of Franck–Condon factors, J. Chem. Phys., 1967, 46, 440.

    Article  CAS  Google Scholar 

  65. Y. Haas and G. Stein, Pathways of radiative and radiationless transitions in europium(III) solutions. The role of high energy vibrations, J. Phys. Chem., 1971, 75, 3677.

    Article  CAS  Google Scholar 

  66. R. A. Copeland and D. R. Crossley, Radiative, collisional and dissociative processes in triplet acetone, Chem. Phys. Lett., 1985, 115, 362.

    Article  CAS  Google Scholar 

  67. J. Solomon, C. Jonah, P. Chandra and R. Bersohn, Photolysis mapping studies of aliphatic carbonyl compounds, J. Chem. Phys., 1971, 55, 362.

    Article  Google Scholar 

  68. S. K. Kim, S. Pedersen and A. H. Zewail, Direct femtosecond observation of the transient intermediate in the cleavage reaction of (CH3)2CO to 2CH3 + CO: resolving the issue of concertedness, J. Chem. Phys., 1995, 103, 477.

    Article  CAS  Google Scholar 

  69. Q. Zhong, L. Poth, A. W. Castleman, Jr., Ultrafast dissociation dynamics of acetone: a revisit to the S1 state and 3s Rydberg state, J. Chem. Phys., 1999, 110, 192.

    Article  CAS  Google Scholar 

  70. J. C. Owrutski and A. P. Baronawski, Ultrafast photodissociation dynamics of the S1and S2 states of acetone, J. Chem. Phys., 1999, 110, 11?206.

    Google Scholar 

  71. M.-C. Chuang, M. F. Foltz and C. B. Moore, T1 barrier height, S1T1 intersystems crossing rate, and S0 radical dissociation threshold for H2CO, D2CO, and HDCO, J. Chem. Phys., 1987, 87, 3855.

    Article  CAS  Google Scholar 

  72. W. F. Polik, D. R. Gruyer and C. B. Moore, Stark level-crossing spectroscopy of S0 formaldehyde eigenstates at the dissociation threshold, J. Chem. Phys., 1990, 92, 3453.

    Article  CAS  Google Scholar 

  73. R. Walsh and S. W. Benson, Kinetics and mechanism of the gas phase reaction between iodine and formaldehyde and the carbon-hydrogen bond strength in formaldehyde, J. Am. Chem. Soc., 1966, 88, 4570.

    Article  CAS  PubMed  Google Scholar 

  74. F. Polik and C. B. Moore, A transition state theory-based statistical distribution of unimolecular decay rates with application to unimolecular decomposition of formaldehyde, J. Chem. Phys., 1990, 93, 5657.

    Article  Google Scholar 

  75. R. J. Gill and G. H. Atkinson, Wavelength dependence of HCO formation in the photolysis of acetaldehyde, Chem. Phys. Lett., 1979, 64, 426.

    Article  CAS  Google Scholar 

  76. M. Noble, E. K. C. Lee, The singlet π*←n spectrum of jet-cooled acetaldehyde, J. Chem. Phys., 1982, 78, 2219.

    Article  Google Scholar 

  77. T. Kono, M. Takayanagi, T. Nishiya and I. Hanazaki, Photodissociation of acetaldehyde studied by photofragment excitation spectroscopy in a supersonic free jet, Chem. Phys. Lett., 1993, 201, 166.

    Article  CAS  Google Scholar 

  78. T. Gejo, H. Bitto and J. R. Huber, Quantum beats in the S1 dynamics of acetaldehyde, Chem. Phys. Lett., 1996, 261, 443.

    Article  CAS  Google Scholar 

  79. C.-H. Huang, V. Chien, C.-K. Ni, A. H. Kung, I-C. Chen, State-resolved dynamics of dissociation of triplet acetaldehyde: rate of appearance of fragment HCO and decay of excited states of parent molecule, J. Phys. Chem., 2000, 104, 10-362.

    Article  CAS  Google Scholar 

  80. O. K. Abu Zied and J. D. McDonald, Picosecond real time study of the bimolecular reaction O(3P) + C2H4 and the unimolecular photodissociation of CH3CHO and H2CO, J. Chem. Phys., 1998, 109, 1293.

    Article  Google Scholar 

  81. J. S. Yadav and J. D. Goddard, Acetaldehyde photochemistry: the radical and molecular dissociations, J. Chem. Phys., 1986, 84, 2682.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haas, Y. Photochemical α-cleavage of ketones: revisiting acetone. Photochem Photobiol Sci 3, 6–16 (2004). https://doi.org/10.1039/b307997j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b307997j

Navigation