Skip to main content
Log in

Preparation of carbon-coated brookite@anatase TiO2 heterophase junction nanocables with enhanced photocatalytic performance

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

One-dimensional TiO2@C nanocables with a heterophase junction have been successfully prepared by coating brookite@anatase TiO2 with a thin layer of hydrothermal carbon (HTC). Compared with anatase TiO2, the biphase brookite@anatase structure can reduce the recombination rate of the excited electron/hole pairs of TiO2. The HTC coating not only enhances the adsorption capability of the TiO2 catalyst for organic pollutants but also facilitates photogenerated electron transfer to further increase its photo-catalytic activity. Therefore, compared with anatase TiO2, brookite@anatase TiO2, and TiO2@C, the brookite@anatase TiO2@C shows the highest photocatalytic activity for the photodegradation of tetracycline (TC) under the irradiation of UV-visible light. Moreover, 'O2 has been proved to be the predominant active species for the photodegradation of TC, and the photocatalytic mechanism of brookite@anatase TiO2@C nanocables has also been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Z. Cetecioglu, B. Ince, M. Gros, S. Rodriguez-Mozaz, D. Barcelo, D. Orhon and O. Ince, Water Res., 2013, 47, 2959–2969.

    CAS  PubMed  Google Scholar 

  2. Q. Q. Zhang, G. G. Ying, C. G. Pan, Y. S. Liu and J. L. Zhao, Environ. Sci. Technol., 2015, 49, 6772–6782.

    CAS  PubMed  Google Scholar 

  3. F. C. Cabello, H. P. Godfrey, A. Tomova, L. Ivanova, H. Dolz, A. Millanao and A. H. Buschmann, Environ. Microbiol., 2013, 15, 1917–1942.

    PubMed  Google Scholar 

  4. C. Song, X.-F. Sun, Y.-K. Wang, P.-F. Xia, F.-H. Yuan, J.-J. Li and S.-G. Wang, J. Chem. Technol. Biotechnol., 2016, 91, 1562–1568.

    CAS  Google Scholar 

  5. P. Shao, J. Tian, X. Duan, Y. Yang, W. Shi, X. Luo, F. Cui, S. Luo and S. Wang, Chem. Eng. J., 2019, 359, 79–87.

    CAS  Google Scholar 

  6. M. Sun, Y. Zhang, S. Y. Kong, L. F. Zhai and S. Wang, Water Res., 2019, 158, 313–321.

    CAS  PubMed  Google Scholar 

  7. F. Biancullo, N. F. F. Moreira, A. R. Ribeiro, C. M. Manaia, J. L. Faria, O. C. Nunes, S. M. Castro-Silva and A. M. T. Silva, Chem. Eng. J., 2019, 367, 304–313.

    CAS  Google Scholar 

  8. Q. Liu, J. Shen, X. Yang, T. Zhang and H. Tang, Appl. Catal., B, 2018, 232, 562–573.

    CAS  Google Scholar 

  9. J. Chen, F. Qiu, W. Xu, S. Cao and H. Zhu, Appl. Catal., A, 2015, 495, 131–140.

    CAS  Google Scholar 

  10. Q. Guo, C. Zhou, Z. Ma, Z. Ren, H. Fan and X. Yang, Chem. Soc. Rev., 2016, 45, 3701–3730.

    CAS  PubMed  Google Scholar 

  11. X. Chen and S. S. Mao, Chem. Rev., 2007, 107, 2891–2959.

    CAS  PubMed  Google Scholar 

  12. Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han and C. Li, Chem. Rev., 2014, 114, 9987–10043.

    CAS  PubMed  Google Scholar 

  13. M.-C. Wu, K.-C. Hsiao, Y.-H. Chang and K. Kordás, ACS Appl. Nano Mater, 2019, 2, 1970–1979.

    CAS  Google Scholar 

  14. X. An, C. Hu, H. Liu and J. Qu, Langmuir, 2018, 34, 1883–1889.

    CAS  PubMed  Google Scholar 

  15. B. K. Mutuma, G. N. Shao, W. D. Kim and H. T. Kim, J. Colloid Interface Sci., 2015, 442, 1–7.

    CAS  PubMed  Google Scholar 

  16. L. Liu, D. T. Pitts, H. Zhao, C. Zhao and Y. Li, Appl. Catal., A, 2013, 467, 474–482.

    CAS  Google Scholar 

  17. J. Cai, Y. Wang, Y. Zhu, M. Wu, H. Zhang, X. Li, Z. Jiang and M. Meng, ACS Appl. Mater. Interfaces, 2015, 7, 24987–24992.

    CAS  PubMed  Google Scholar 

  18. H. Wei, E. F. Rodriguez, A. F. Hollenkamp, A. I. Bhatt, D. Chen and R. A. Caruso, Adv. Funct. Mater., 2017, 27, 1703270.

    Google Scholar 

  19. Z. Wang, Y. Wang, W. Zhang, Z. Wang, Y. Ma and X. Zhou, J. Phys. Chem. C, 2019, 123, 1779–1789.

    CAS  Google Scholar 

  20. S. Zhang, D. Yang, D. Jing, H. Liu, L. Liu, Y. Jia, M. Gao, L. Guo and Z. Huo, Nano Res., 2014, 7, 1659–1669.

    Google Scholar 

  21. Y. Cao, X. Li, Z. Bian, A. Fuhr, D. Zhang and J. Zhu, Appl. Catal., B, 2016, 180, 551–558.

    CAS  Google Scholar 

  22. A. Di Paola, G. Cufalo, M. Addamo, M. Bellardita, R. Campostrini, M. Ischia, R. Ceccato and L. Palmisano, Colloids Surf., A, 2008, 317, 366–376.

    Google Scholar 

  23. O. Pikuda, C. Garlisi, G. Scandura and G. Palmisano, J. Catal., 2017, 346, 109–116.

    CAS  Google Scholar 

  24. L. K. Preethi, R. P. Antony, T. Mathews, L. Walczak and C. S. Gopinath, Sci. Rep., 2017, 7, 14314.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. L. K. Preethi, T. Mathews, M. Nand, S. N. Jha, C. S. Gopinath and S. Dash, Appl. Catal., B, 2017, 218, 9–19.

    CAS  Google Scholar 

  26. L. K. Preethi, T. Mathews, L. Walczak and C. S. Gopinath, Energy Technol., 2018, 6, 280–288.

    CAS  Google Scholar 

  27. L. K. Preethi and T. Mathews, Catal. Sci. Technol., 2019, 9, 5425–5432.

    CAS  Google Scholar 

  28. J. Wei, C. Tu, G. Yuan, D. Bi, L. Xiao, B. K. G. Theng, H. Wang and Y. S. Ok, J. Hazard. Mater., 2019, 368, 541–549.

    CAS  PubMed  Google Scholar 

  29. B. Han, E. Zhang, G. Cheng, L. Zhang, D. Wang and X. Wang, Chem. Eng. J., 2018, 338, 734–744.

  30. B. Han, W. Cai and Z. Yang, Ind. Eng. Chem. Res., 2019, 58, 6635–6643.

    CAS  Google Scholar 

  31. P. Zhang, B. Li, Z. Zhao, C. Yu, C. Hu, S. Wu and J. Qiu, ACS Appl. Mater. Interfaces, 2014, 6, 8560–8566.

    CAS  PubMed  Google Scholar 

  32. P. Zhang, Y. Chen, X. Yang, J. Gui, Y. Li, H. Peng, D. Liu and J. Qiu, Langmuir, 2017, 33, 4452–4460.

    CAS  PubMed  Google Scholar 

  33. D. Yang, H. Liu, Z. Zheng, Y. Yuan, J. Zhao, E. R. Waclawik, X. Ke and H. Zhu, J. Am. Chem. Soc., 2009, 131, 17885–17893.

    CAS  PubMed  Google Scholar 

  34. T. Ohsaka, F. Izumi and Y. Fujiki, J. Raman Spectrosc., 1978, 7, 321–324.

    Google Scholar 

  35. X. H. Wang, J. G. Li, H. Kamiyama, M. Katada, N. Ohashi, Y. Moriyoshi and T. Ishigaki, J. Am. Chem. Soc., 2005, 127, 10982–10990.

    CAS  PubMed  Google Scholar 

  36. G. A. Tompsett, G. A. Bowmaker, R. P. Cooney, J. B. Metson, K. A. Rodgers and J. M. Seakins, J. Raman Spectrosc., 1995, 26, 57–62.

    CAS  Google Scholar 

  37. H. Kominami, M. Kohnoa and Y. Kera, J. Mater. Chem., 2000, 10, 1151–1156.

    CAS  Google Scholar 

  38. J. Li, D. Li, H. Haneda and T. Ishigaki, J. Am. Ceram. Soc., 2004, 87, 1358–1361.

    CAS  Google Scholar 

  39. A. Sarkar, K. Karmakar, A. K. Singh, K. Mandal and G. G. Khan, Phys. Chem. Chem. Phys., 2016, 18, 26900–26912.

    CAS  PubMed  Google Scholar 

  40. B. Jiang, Y. Tang, Y. Qu, J. Wang, Y. Xie, C. Tian, W. Zhou and H. Fu, Nanoscale, 2015, 7, 5035–5045.

    CAS  PubMed  Google Scholar 

  41. L. Hao, K. Miyazawa, H. Yoshida and Y. Lu, Mater. Res. Bull., 2018, 97, 13–18.

    CAS  Google Scholar 

  42. J. Tang, Y. Liu, Y. Hu, G. Lv, C. Yang and G. Yang, Chem. –Eur. J., 2018, 24, 4390–4398.

    CAS  PubMed  Google Scholar 

  43. P. Wang, Q. Zhou, Y. Xia, S. Zhan and Y. Li, Appl. Catal., B, 2018, 225, 433–444.

    CAS  Google Scholar 

  44. C. Ai, P. Xie, X. Zhang, X. Zheng, J. Li, A. Kafizas and S. Lin, ACS Sustainable Chem. Eng., 2019, 7, 5274–5282.

    CAS  Google Scholar 

  45. J.-G. Yu, H.-G. Yu, B. Cheng, X.-J. Zhao, J. C. Yu and W.-K. Ho, J. Phys. Chem. B, 2003, 107, 13871–13879.

    CAS  Google Scholar 

  46. L. Jing, Y. Qu, B. Wang, S. Li, B. Jiang, L. Yang, W. Fu, H. Fu and J. Sun, Sol. Energy Mater. Sol. Cells, 2006, 90, 1773–1787.

    CAS  Google Scholar 

  47. B. Tian, C. Li and J. Zhang, Chem. Eng. J., 2012, 191, 402–409.

    CAS  Google Scholar 

  48. K. Li, B. Peng, J. Jin, L. Zan and T. Peng, Appl. Catal., B, 2017, 203, 910–916.

  49. C. Xue, T. Wang, G. Yang, B. Yang and S. Ding, J. Mater. Chem. A, 2014, 2, 7674–7679.

  50. T. A. Kandiel, A. Feldhoff, L. Robben, R. Dillert and D. W. Bahnemann, Chem. Mater., 2010, 22, 2050–2060.

  51. S. M. El-Sheikh, T. M. Khedr, G. Zhang, V. Vogiazi, A. A. Ismail, K. O’Shea and D. D. Dionysiou, Chem. Eng. J., 2017, 310, 428–436.

  52. H. Wei, W. A. McMaster, J. Z. Y. Tan, D. Chen and R. A. Caruso, J. Mater. Chem. A, 2018, 6, 7236–7245.

  53. P. Zhang, X. Yang, Z. Zhao, B. Li, J. Gui, D. Liu and J. Qiu, Carbon, 2017, 116, 59–67.

  54. P. Zhang, X. Yang, Z. Jin, J. Gui, R. Tan and J. Qiu, Appl. Catal., A, 2019, 583, 117145.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Liu.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/ d0pp00004c

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, R., Wang, Y., Jin, Z. et al. Preparation of carbon-coated brookite@anatase TiO2 heterophase junction nanocables with enhanced photocatalytic performance. Photochem Photobiol Sci 19, 966–975 (2020). https://doi.org/10.1039/d0pp00004c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/d0pp00004c

Navigation