Issue 3, 2021

Dual effect of molecular mobility and functional groups of polyrotaxane surfaces on the fate of mesenchymal stem cells

Abstract

Polyrotaxanes are supramolecular assemblies consisting of cyclic molecules (e.g., α-cyclodextrins) and linear polymer chains (e.g., poly[ethylene glycol]), in which cyclic molecules can move along the polymer chain. Here, we examined the effect of functional groups introduced into the α-cyclodextrins of polyrotaxane on cell responses such as adhesion, proliferation, and differentiation. Polyrotaxane-based triblock copolymers modified with methyl (CH3, hydrophobic, and nonionic), hydroxy (OH, hydrophilic and nonionic), amino (NH2, cationic), and sulfo (SO3H, anionic) groups were coated on the surface of the culture plate to fabricate polyrotaxane surfaces with different surface chemistries. The chemical compositions of each surface were determined via time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy. The contact angle hysteresis reflecting the molecular mobility and zeta potential of each polyrotaxane surface changed depending on the functional groups. When osteoblast and adipocyte differentiation was induced in human mesenchymal stem cells cultured on each polyrotaxane surface, the cells adhered to the SO3H-modified polyrotaxane surfaces exhibited osteoblast differentiation, whereas the cells adhered to the OH-, NH2-, and SO3H-modified polyrotaxane surfaces preferentially underwent adipocyte differentiation compared with those on the unmodified and CH3-modified polyrotaxane surfaces. Interestingly, the SO3H-modified polyrotaxane surfaces promoted both osteoblast and adipocyte differentiation. High molecular mobility and negative charge on the SO3H-modified polyrotaxane surfaces are expected to contribute to the facilitation of both osteoblast and adipocyte differentiation.

Graphical abstract: Dual effect of molecular mobility and functional groups of polyrotaxane surfaces on the fate of mesenchymal stem cells

Supplementary files

Article information

Article type
Paper
Submitted
19 Oct 2020
Accepted
21 Nov 2020
First published
08 Dec 2020

Biomater. Sci., 2021,9, 675-684

Dual effect of molecular mobility and functional groups of polyrotaxane surfaces on the fate of mesenchymal stem cells

R. Sekiya-Aoyama, Y. Arisaka, M. Hakariya, H. Masuda, T. Iwata, T. Yoda and N. Yui, Biomater. Sci., 2021, 9, 675 DOI: 10.1039/D0BM01782E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements