Skip to main content
Log in

Amplified luminescence quenching effect upon binding of nitrogen doped carbon nanodots to transition metal ions

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

There is a significant drive to identify a unified emission mechanism hidden behind carbon nanodots (CDs) to attain reliable control over their photoluminescence properties. This issue is addressed here by investigating the fluorescence response of citric acid and urea-based nitrogen doped carbon nanodots (NCDs) towards transition metal ions in solutions of different polarities/viscosities/hydrogen bonding strengths. The photoluminescence from NCDs upon excitation at 400 nm is quenched by metal ions such as chromium(VI), ruthenium(III) and iron(III) in two different polar solvents, protic water and aprotic dimethylsulphoxide (DMSO). This amplified luminescence quenching in polar solutions showed significant static quenching contributions. The quenching phenomenon highly depends on the excitation wavelength and solvent environment. The fluorescence quenching sequence reveals that pyridinic nitrogen-bases have a dominant influence on J-like emissive aggregates of NCDs. Similarly, oxygen-containing functional groups play a significant role in constructing H-aggregates of NCDs. The most intense emission is contributed by the J-like assembly of H-aggregates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Li, M. Rui, J. Song, Z. Shen and H. Zeng, Carbon and Graphene Quantum Dots for Optoelectronic and Energy Devices: A Review, Adv. Funct. Mater., 2015, 25 ,4929–4947.

    Article  Google Scholar 

  2. Y. Xiong, J. Schneider, E. V. Ushakova and A. L. Rogach, Influence of molecular fluorophores on the research field of chemically synthesized carbon dots, Nano Today, 2018, 23 ,124–139.

    Article  Google Scholar 

  3. D. C. Green, M. A. Holden, M. A. Levenstein, S. Zhang, B. R. G. Johnson, J. Gala de Pablo, A. Ward, S. W. Botchway and F. C. Meldrum, Controlling the fluorescence and room-temperature phosphorescence behaviour of carbon nano-dots with inorganic crystalline nanocomposites, Nat. Commun., 2019, 10 ,206.

    Article  Google Scholar 

  4. L. Đorđević, F. Arcudi, A. D’Urso, M. Cacioppo, N. Micali, T. Bürgi, R. Purrello and M. Prato, Design principles of chiral carbon nanodots help convey chirality from molecular to nanoscale level, Nat. Commun., 2018, 9 ,3442.

    Article  Google Scholar 

  5. J. Liu, N. Wang, Y. Yu, Y. Yan, H. Zhang, J. Li and J. Yu, Carbon dots in zeolites: A new class of thermally activated delayed fluorescence materials with ultralong lifetimes, Sci. Adv., 2017, 3 ,e1603171.

  6. A. Sharma, T. Gadly, A. Gupta, A. Ballal, S. K. Ghosh and M. Kumbhakar, Origin of Excitation Dependent Fluorescence in Carbon Nanodots, J. Phys. Chem. Lett., 2016, 7 ,3695–3702.

    Article  Google Scholar 

  7. Y. Dong, J. Cai, X. You and Y. Chi, Sensing applications of luminescent carbon based dots, Analyst, 2015, 140 ,7468–7486.

    Article  Google Scholar 

  8. S. Zhu, Q. Meng, L. Wang, J. Zhang, Y. Song, H. Jin, K. Zhang, H. Sun, H. Wang and B. Yang, Highly Photoluminescent Carbon Dots for Multicolor Patterning, Sensors, and Bioimaging, Angew. Chem., Int. Ed., 2013, 52 ,3953–3957.

    Article  Google Scholar 

  9. M. J. Krysmann, A. Kelarakis, P. Dallas and E. P. Giannelis, Formation Mechanism of Carbogenic Nanoparticles with Dual Photoluminescence Emission, J. Am. Chem. Soc., 2012, 134 ,747–750.

    Article  Google Scholar 

  10. S. Dutta Choudhury, J. M. Chethodil, P. M. Gharat, P. K. Praseetha and H. Pal, pH-Elicited Luminescence Functionalities of Carbon Dots: Mechanistic Insights, J. Phys. Chem. Lett., 2017, 8 ,1389–1395.

    Article  Google Scholar 

  11. Z. Qian, J. Ma, X. Shan, H. Feng, L. Shao and J. Chen, Highly Luminescent N-Doped Carbon Quantum Dots as an Effective Multifunctional Fluorescence Sensing Platform, Chem. – Eur. J., 2014, 20 ,2254–2263.

    Article  Google Scholar 

  12. A. Sharma, T. Gadly, S. Neogy, S. K. Ghosh and M. Kumbhakar, Molecular Origin and Self-Assembly of Fluorescent Carbon Nanodots in Polar Solvents, J. Phys. Chem. Lett., 2017, 8 ,1044–1052.

    Article  Google Scholar 

  13. A. Sciortino, E. Marino, B. van Dam, P. Schall, M. Cannas and F. Messina, Solvatochromism Unravels the Emission Mechanism of Carbon Nanodots, J. Phys. Chem. Lett., 2016, 7 ,3419–3423.

    Article  Google Scholar 

  14. S. Mukherjee, E. Prasad and A. Chadha, H-Bonding controls the emission properties of functionalized carbon nano-dots, Phys. Chem. Chem. Phys., 2017, 19 ,7288–7296.

    Article  Google Scholar 

  15. A. P. Demchenko and M. O. Dekaliuk, The origin of emissive states of carbon nanoparticles derived from ensemble-averaged and single-molecular studies, Nanoscale, 2016, 8 ,14057–14069.

    Article  Google Scholar 

  16. S. Y. Lim, W. Shen and Z. Gao, Carbon quantum dots and their applications, Chem. Soc. Rev., 2015, 44 ,362–381.

    Article  Google Scholar 

  17. Q. Xu, T. Kuang, Y. Liu, L. Cai, X. Peng, T. Sreenivasan Sreeprasad, P. Zhao, Z. Yu and N. Li, Heteroatom-doped carbon dots: synthesis, characterization, properties, photo-luminescence mechanism and biological applications, J. Mater. Chem. B, 2016, 4 ,7204–7219.

  18. W. Kasprzyk, S. Bednarz and D. Bogdal, Luminescence phenomena of biodegradable photoluminescent poly(diol citrates), Chem. Commun., 2013, 49 ,6445.

    Article  CAS  Google Scholar 

  19. W. Kasprzyk, T. Świergosz, S. Bednarz, K. Walas, N. V. Bashmakova and D. Bogdał, Luminescence phenomena of carbon dots derived from citric acid and urea-a molecular insight, Nanoscale, 2018, 10 ,13889–13894.

    Article  Google Scholar 

  20. N. J. Hestand and F. C. Spano, Expanded Theory of H- and J-Molecular Aggregates: The Effects of Vibronic Coupling and Intermolecular Charge Transfer, Chem. Rev., 2018, 118 ,7069–7163.

    Article  Google Scholar 

  21. J. S. Anjali Devi, R. S. Aparna, R. R. Anjana, J. Nebu, S. M. Anju and S. George, Solvent Effects: A Signature of J-and H-Aggregate of Carbon Nanodots in Polar Solvents, J. Phys. Chem. A, 2019, 123 ,7420–7429.

    Article  Google Scholar 

  22. N. Basu and D. Mandal, Solvatochromic Response of Carbon Dots: Evidence of Solvent Interaction with Different Types of Emission Centers, J. Phys. Chem. C, 2018, 122 ,18732–18741.

    Article  Google Scholar 

  23. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer US, 2013.

  24. C. Tan, E. Atas, J. G. Müller, M. R. Pinto, V. D. Kleiman and K. S. Schanze, Amplified quenching of a conjugated poly-electrolyte by cyanine dyes, J. Am. Chem. Soc., 2004, 126 ,13685–13694.

    Article  Google Scholar 

  25. C. Tan, M. R. Pinto and K. S. Schanze, Photophysics, aggregation and amplified quenching of a water-soluble poly (phenylene ethynylene), Chem. Commun., 2002, 446–447.

    Google Scholar 

  26. L. Cao, Z. Lin, W. Shi, Z. Wang, C. Zhang, X. Hu, C. Wang and W. Lin, Exciton Migration and Amplified Quenching on Two-Dimensional Metal–Organic Layers, J. Am. Chem. Soc., 2017, 139 ,7020–7029.

    Article  Google Scholar 

  27. N. Goswami, Q. Yao, Z. Luo, J. Li, T. Chen and J. Xie, Luminescent Metal Nanoclusters with Aggregation-Induced Emission, J. Phys. Chem. Lett., 2016, 7 ,962–975.

    Article  Google Scholar 

  28. Z. Luo, X. Yuan, Y. Yu, Q. Zhang, D. T. Leong, J. Y. Lee and J. Xie, From Aggregation-Induced Emission of Au(I)– Thiolate Complexes to Ultrabright Au(0)@Au(I)-Thiolate Core–Shell Nanoclusters, J. Am. Chem. Soc., 2012, 134 ,16662–16670.

    Article  Google Scholar 

  29. S. Qu, X. Wang, Q. Lu, X. Liu and L. Wang, A Biocompatible Fluorescent Ink Based on Water-Soluble Luminescent Carbon Nanodots, Angew. Chem., Int. Ed., 2012, 51 ,12215–12218.

    Article  Google Scholar 

  30. J. S. A. Devi, R. S. Aparna, B. Aswathy, J. Nebu, A. O. Aswathy and S. George, Understanding the Citric Acid-Urea Co-Directed Microwave Assisted Synthesis and Ferric Ion Modulation of Fluorescent Nitrogen Doped Carbon Dots: A Turn On Assay for Ascorbic Acid, ChemistrySelect, 2019, 4 ,816–824.

    Article  Google Scholar 

  31. N. J. Hestand and F. C. Spano, Molecular Aggregate Photophysics beyond the Kasha Model: Novel Design Principles for Organic Materials, Acc. Chem. Res., 2017, 50 ,341–350.

    Article  Google Scholar 

  32. F. Feng, J. Yang, D. Xie, T. D. McCarley and K. S. Schanze, Remarkable Photophysics and Amplified Quenching of Conjugated Polyelectrolyte Oligomers, J. Phys. Chem. Lett., 2013, 4 ,1410–1414.

    Article  Google Scholar 

  33. J. Yang, D. Wu, D. Xie, F. Feng and K. S. Schanze, Ion-Induced Aggregation of Conjugated Polyelectrolytes Studied by Fluorescence Correlation Spectroscopy, J. Phys. Chem. B, 2013, 117 ,16314–16324.

    Article  Google Scholar 

  34. F. Zu, F. Yan, Z. Bai, J. Xu, Y. Wang, Y. Huang and X. Zhou, The quenching of the fluorescence of carbon dots: A review on mechanisms and applications, Microchim. Acta, 2017, 184 ,1899–1914.

    Article  Google Scholar 

  35. M. J. O’Connell, E. E. Eibergen and S. K. Doorn, Chiral selectivity in the charge-transfer bleaching of single-walled carbon-nanotube spectra, Nat. Mater., 2005, 4 ,412–418.

    Article  Google Scholar 

  36. S.-J. Jeon, S.-Y. Kwak, D. Yim, J.-M. Ju and J.-H. Kim, Chemically-Modulated Photoluminescence of Graphene Oxide for Selective Detection of Neurotransmitter by “Turn-On” Response, J. Am. Chem. Soc., 2014, 136 ,10842–10845.

    Article  Google Scholar 

  37. C. A. Kent, D. Liu, T. J. Meyer and W. Lin, Amplified Luminescence Quenching of Phosphorescent Metal-Organic Frameworks, J. Am. Chem. Soc., 2012, 134 ,3991–3994.

    Article  Google Scholar 

  38. M. E. Kose, B. A. Harruff, Y. Lin, L. M. Veca, F. Lu and Y.-P. Sun, Efficient Quenching of Photoluminescence from Functionalized Single-Walled Carbon Nanotubes by Nitroaromatic Molecules, J. Phys. Chem. B, 2006, 110 ,14032–14034.

    Article  Google Scholar 

  39. E. T. Niles, J. D. Roehling, H. Yamagata, A. J. Wise, F. C. Spano, A. J. Moulé and J. K. Grey, J-Aggregate Behavior in Poly-3-hexylthiophene Nanofibers, J. Phys. Chem. Lett., 2012, 3 ,259–263.

    Article  Google Scholar 

  40. F. C. Spano and C. Silva, H- and J-Aggregate Behavior in Polymeric Semiconductors, Annu. Rev. Phys. Chem., 2014, 65 ,477–500.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sony George.

Additional information

Electronic supplementary information (ESI) available: Synthesis of NCDs; experimental methods; ESI figures (Fig. S1–S16) illustrating characterisation using HRTEM, DLS technique, XPS, FTIR, steady state fluorescence, time resolved fluorescence and absorption spectroscopy; physical properties of solvents used in this study (Table S1); amplified quenching parameters of the previous conjugated polyelectrolytes and the present NCD system (Tables S2 and S3); time-resolved fluorescence decay parameters (Tables S4 and S5). See DOI: 10.1039/c9pp00420c

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, J.S.A., Aparna, R.S., Anjana, R.R. et al. Amplified luminescence quenching effect upon binding of nitrogen doped carbon nanodots to transition metal ions. Photochem Photobiol Sci 19, 207–216 (2020). https://doi.org/10.1039/c9pp00420c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00420c

Navigation