Skip to main content
Log in

Selection and characterization of a DNA aptamer to crystal violet

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Aptamers are short single-stranded DNA or RNA, which can be selected in vitro by systematic evolution of ligands by exponential enrichment (SELEX). In order to develop novel light-up probes to substitute G-quadruplex (G4), we selected a DNA aptamer for crystal violet (CV), a triphenylmethane light-up dye, by a modified affinity chromatography-based SELEX. The ssDNA pool was first coupled on streptavidin-coated agarose beads through a biotin labeled complementary oligonucleotide, and then the aptamer sequences would be released from agarose beads by CV affinity. This method is simple, straightforward and effective. The aptamer sequence with a low micromolar dissociation constant (Kd) and good specificity was achieved after 11 rounds of selection. The light-up properties of the CV–aptamer were also investigated, and the CV showed dramatic fluorescence enhancement. The CV–aptamer pair could be further used as a novel light-up fluorescent probe to design biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. T. Davis, G-quartets 40 years later: from 5′-GMP to molecular biology and supramolecular chemistry, Angew. Chem., Int. Ed., 2004, 43, 668–698.

    Article  CAS  Google Scholar 

  2. S. Millevoi, H. Moine and S. Vagner, G-quadruplexes in RNA biology, WIREs RNA, 2012, 3, 495–507.

    Article  CAS  PubMed  Google Scholar 

  3. A. T. Phan, Human telomeric G-quadruplex: structures of DNA and RNA sequences, FEBS J., 2010, 277, 1107–1117.

    Article  CAS  PubMed  Google Scholar 

  4. Y. Xu, Chemistry in human telomere biology: structure, function and targeting of telomere DNA/RNA, Chem. Soc. Rev., 2011, 40, 2719–2740.

    Article  CAS  PubMed  Google Scholar 

  5. A. M. Burger, F. Dai, C. M. Schultes, A. P. Reszka, M. J. Moore, J. A. Double and S. Neidle, The G-quadruplex-interactive molecule BRACO-19 inhibits tumor growth, consistent with telomere targeting and interference with telomerase function, Cancer Res., 2005, 65, 1489–1496.

    Article  CAS  PubMed  Google Scholar 

  6. S. Burge, G. N. Parkinson, P. Hazel, A. K. Todd and S. Neidle, Quadruplex DNA: sequence, topology and structure, Nucleic Acids Res., 2006, 34, 5402–5415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. B. Li, S. Dong and E. Wang, Homogeneous analysis: label-free and substrate-free aptasensors, Chem. - Asian J., 2010, 5, 1262–1272.

    CAS  PubMed  Google Scholar 

  8. E. Largy, A. Granzhan, F. Hamon, D. Verga and M. P. Teulade-Fichou, Visualizing the quadruplex: from fluorescent Iigands to light-up probes, Top. Curr. Chem., 2013, 330, 111–177.

    Article  CAS  PubMed  Google Scholar 

  9. B. R. Vummidi, J. Alzeer and N. W. Luedtke, Fluorescent probes for G-quadruplex structures, ChemBioChem, 2013, 14, 540–558.

    Article  CAS  PubMed  Google Scholar 

  10. H. Arthanari, S. Basu, T. L. Kawano and P. H. Bolton, Fluorescent dyes specific for quadruplex DNA, Nucleic Acids Res., 1998, 26, 3724–3728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. W. J. Zhang, T. M. Ou, Y. J. Lu, Y. Y. Huang, W. B. Wu, Z. S. Huang, J. L. Zhou, K. Y. Wong and L. Q. Gu, 9-Substituted berberine derivatives as G-quadruplex stabilizing ligands in telomeric DNA, Bioorg. Med. Chem., 2007, 15, 5493–5501.

    Article  CAS  PubMed  Google Scholar 

  12. A. C. Bhasikuttan, J. Mohanty and H. Pal, Interaction of malachite green with guanine-rich single-stranded DNA: preferential binding to a G-quadruplex, Angew. Chem., Int. Ed., 2007, 46, 9305–9307.

    Article  CAS  Google Scholar 

  13. Z. Zhang, E. Sharon, R. Freeman, X. Liu and I. Willner, Fluorescence detection of DNA, adenosine-5′-triphosphate (ATP), and telomerase activity by zinc(II)-protoporphyrin IX/G-quadruplex labels, Anal. Chem., 2012, 84, 4789–4797.

    Article  CAS  PubMed  Google Scholar 

  14. D. Hu, F. Pu, Z. Huang, J. Ren and X. Qu, A quadruplex-based, label-free, and real-time fluorescence assay for RNase H activity and inhibition, Chemistry, 2010, 16, 2605–2610.

    Article  CAS  PubMed  Google Scholar 

  15. H. Z. He, V. P. Ma, K. H. Leung, D. S. Chan, H. Yang, Z. Cheng, C. H. Leung and D. L. Ma, A label-free G-quadruplex-based switch-on fluorescence assay for the selective detection of ATP, Analyst, 2012, 137, 1538–1540.

    Article  CAS  PubMed  Google Scholar 

  16. J. Mohanty, N. Barooah, V. Dhamodharan, S. Harikrishna, P. I. Pradeepkumar and A. C. Bhasikuttan, Thioflavin T as an efficient inducer and selective fluorescent sensor for the human telomeric G-quadruplex DNA, J. Am. Chem. Soc., 2013, 135, 367–376.

    Article  CAS  PubMed  Google Scholar 

  17. D. Shangguan, Y. Li, Z. Tang, Z. C. Cao, H. W. Chen, P. Mallikaratchy, K. Sefah, C. J. Yang and W. Tan, Aptamers evolved from live cells as effective molecular probes for cancer study, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 11838–11843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Y. Guo, W. Yao, Y. Xie, X. Zhou, J. Hu and R. Pei, Logic gates based on G-quadruplexes: principles and sensor applications, Microchim. Acta, 2016, 183, 21–34.

    Article  CAS  Google Scholar 

  19. C. Tuerk and L. Gold, Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase, Science, 1990, 249, 505–510.

    Article  CAS  PubMed  Google Scholar 

  20. A. D. Ellington and J. W. Szostak, In vitro selection of RNA molecules that bind specific ligands, Nature, 1990, 346, 818–822.

    Article  CAS  PubMed  Google Scholar 

  21. Y. Yang, D. Yang, H. J. Schluesener and Z. Zhang, Advances in SELEX and application of aptamers in the central nervous system, Biomol. Eng., 2007, 24, 583–592.

    Article  CAS  PubMed  Google Scholar 

  22. M. Famulok, G. Mayer and M. Blind, Nucleic acid aptamers-from selection in vitro to applications in vivo, Acc. Chem. Res., 2000, 33, 591–599.

    CAS  PubMed  Google Scholar 

  23. Y. Du, B. Li and E. Wang, “Fitting” makes “sensing” simple: label-free detection strategies based on nucleic acid aptamers, Acc. Chem. Res., 2013, 46, 203–213.

    Article  CAS  PubMed  Google Scholar 

  24. H. Wang, H. Cheng, J. Wang, L. Xu, H. Chen and R. Pei, Selection and characterization of DNA aptamers for the development of light-up biosensor to detect Cd(II), Talanta, 2016, 154, 498–503.

    Article  CAS  PubMed  Google Scholar 

  25. D. M. Kolpashchikov, Binary malachite green aptamer for fluorescent detection of nucleic acids, J. Am. Chem. Soc., 2005, 127, 12442–12443.

    Article  CAS  PubMed  Google Scholar 

  26. C. H. Leung, D. S. Chan, B. Y. Man, C. J. Wang, W. Lam, Y. C. Cheng, W. F. Fong, W. L. Hsiao and D. L. Ma, Simple and convenient G-quadruplex-based turn-on fluorescence assay for 3′ >5′ exonuclease activity, Anal. Chem., 2011, 83, 463–466.

    Article  CAS  PubMed  Google Scholar 

  27. J. R. Babendure, S. R. Adams and R. Y. Tsien, Aptamers switch on fluorescence of triphenylmethane dyes, J. Am. Chem. Soc., 2003, 125, 14716–14717.

    Article  CAS  PubMed  Google Scholar 

  28. S. Sando, A. Narita and Y. Aoyama, Light-up Hoechst-DNA aptamer pair: generation of an aptamer-selective fluorophore from a conventional DNA-staining dye, ChemBioChem, 2007, 8, 1795–1803.

    Article  CAS  PubMed  Google Scholar 

  29. T. P. Constantin, G. L. Silva, K. L. Robertson, T. P. Hamilton, K. Fague, A. S. Waggoner and B. A. Armitage, Synthesis of new fluorogenic cyanine dyes and incorporation into RNA fluoromodules, Org. Lett., 2008, 10, 1561–1564.

    Article  CAS  PubMed  Google Scholar 

  30. H. Arthanari, S. Basu, T. L. Kawano and P. H. Bolton, Fluorescent dyes specific for quadruplex DNA, Nucleic Acids Res., 1998, 26, 3724–3728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. D. M. Kong, Y. E. Ma, J. Wu and H. X. Shen, Discrimination of G-Quadruplexes from duplex and single-stranded DNAs with fluorescence and energy-transfer fluorescence spectra of crystal violet, Chem. - Eur. J., 2009, 15, 901–909.

    Article  CAS  PubMed  Google Scholar 

  32. F. Li, Y. Feng, C. Zhao and B. Tang, Crystal violet as a G-quadruplex-selective probe for sensitive amperometric sensing of lead, Chem. Commun., 2011, 47, 11909–11911.

    Article  CAS  Google Scholar 

  33. Y. Jin, J. Bai and H. Li, Label-free protein recognition using aptamer-based fluorescence assay, Analyst, 2010, 135, 1731–1735.

    Article  CAS  PubMed  Google Scholar 

  34. M. Rajendran and A. D. Ellington, In vitro selection of molecular beacons, Nucleic Acids Res., 2003, 31, 5700–5713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. R. Nutiu and Y. Li, In vitro selection of structure-switching signaling aptamers, Angew. Chem., Int. Ed., 2005, 44, 1061–1065.

    Article  CAS  Google Scholar 

  36. T. L. Bailey and C. Elkan, Fitting a mixture model by expectation maximization to discover motifs in biopolymers, Proc. - Int. Conf. Intell. Syst. Mol. Biol., 1994, 2,28-36.

  37. R. Beinoraviciute-Kellner, G. Lipps and G. Krauss, In vitro selection of DNA binding sites for ABF1 protein from Saccharomyces cerevisiae, FEBS Lett., 2005, 579, 4535–4540.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21575154, 21775160, 21507156) and the Science and Technology Foundation of Suzhou (No. SYG201526).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renjun Pei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Wang, J., Zhang, Y. et al. Selection and characterization of a DNA aptamer to crystal violet. Photochem Photobiol Sci 17, 800–806 (2018). https://doi.org/10.1039/c7pp00457e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c7pp00457e

Navigation