Skip to main content
Log in

Organogels composed of trifluoromethyl anthryl cyanostyrenes: enhanced emission and self-assembly

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A series of α-cyanostyrenes bearing anthracene and electron withdrawing trifluoromethyl units were designed and synthesized. The α-cyanostyrene skeleton favors aggregation induced enhanced emission behavior due to the restriction of intramolecular rotations. Remarkably, the anthryl cyanostyrenes bearing simple trifluoromethyl (CF3) substituents form stable organogels with enhanced fluorescence emission compared to their solution state. In water, the CF3 substituted anthrylstyrenes self-assemble into entangled fibrous nano/microstructures through intermolecular H-bonding, π–π stacking and cyano substituent interactions. The morphological features of the aggregates and the gels were substantiated using scanning electron microscopy, TEM, and powder XRD measurements. The stability of the gels was assessed using rheology investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. N. G. Giepmans, S. R. Adams, M. H. Ellisman and R. Y. Tsien, The Fluorescent Toolbox for Assessing Protein Location and Function, Science, 2006, 312, 217–224.

    Article  CAS  PubMed  Google Scholar 

  2. M. Albota, D. Beljonne, J.-L. Brédas, J. E. Ehrlich, J.-Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu and C. Xu, Design of Organic Molecules with Large Two-Photon Absorption Cross Sections, Science, 1998, 281, 1653.

    Article  CAS  PubMed  Google Scholar 

  3. L. Yuan, W. Lin, K. Zheng, L. He and W. Huang, Far-Red to near Infrared Analyte-Responsive Fluorescent Probes Based on Organic Fluorophore Platforms for Fluorescence Imaging, Chem. Soc. Rev., 2013, 42, 622–661.

    Article  CAS  PubMed  Google Scholar 

  4. J. Cornil, D. Beljonne, J. P. Calbert and J. L. Brédas, Interchain Interactions in Organic n-Conjugated Materials: Impact on Electronic Structure, Optical Response, and Charge Transport, Adv. Mater., 2001, 13, 1053–1067.

    Article  CAS  Google Scholar 

  5. N. B. Teran and J. R. Reynolds, Discrete Donor-Acceptor Conjugated Systems in Neutral and Oxidized States: Implications toward Molecular Design for High Contrast Electrochromics, Chem. Mater., 2017, 29, 1290–1301.

    Article  CAS  Google Scholar 

  6. S. S. Babu, V. K. Praveen and A. Ajayaghosh, Functional n-Gelators and Their Applications, Chem. Rev., 2014, 114, 1973–2129.

    Article  CAS  PubMed  Google Scholar 

  7. S. S. Babu, S. Prasanthkumar and A. Ajayaghosh, SelfAssembled Gelators for Organic Electronics, Angew. Chem., Int. Ed., 2012, 51, 1766–1776.

    Article  CAS  Google Scholar 

  8. A. Ajayaghosh and V. K. Praveen, N-Organogels of SelfAssembled P-Phenylenevinylenes: Soft Materials with Distinct Size, Shape, and Functions, Acc. Chem. Res., 2007, 40, 644–656.

    Article  CAS  PubMed  Google Scholar 

  9. D. Bléger and S. Hecht, Visible-Light-Activated Molecular Switches, Angew. Chem., Int. Ed., 2015, 54, 11338–11349.

    Article  CAS  Google Scholar 

  10. U. Al-Atar, R. Fernandes, B. Johnsen, D. Baillie and N. R. Branda, A Photocontrolled Molecular Switch Regulates Paralysis in a Living Organism, J. Am. Chem. Soc., 2009, 131, 15966–15967.

    Article  CAS  PubMed  Google Scholar 

  11. M. Berberich and F. Würthner, Tuning the Redox Properties of Photochromic Diarylethenes by Introducing Electron-Withdrawing Substituents, Asian J. Org. Chem., 2013, 2, 250–256.

    Article  CAS  Google Scholar 

  12. M. Bossi, V. Belov, S. Polyakova and S. W. Hell, Reversible Red Fluorescent Molecular Switches, Angew. Chem., Int. Ed., 2006, 45, 7462–7465.

    Article  CAS  Google Scholar 

  13. A. Fihey, A. Perrier, W. R. Browne and D. Jacquemin, Multiphotochromic Molecular Systems, Chem. Soc. Rev., 2015, 44, 3719–3759.

    Article  CAS  PubMed  Google Scholar 

  14. M. Irie, Discovery and Development of Photochromic Diarylethenes, Pure Appl. Chem., 2015, 87, 617–626.

    Article  CAS  Google Scholar 

  15. M. Irie, T. Fukaminato, K. Matsuda and S. Kobatake, Photochromism of Diarylethene Molecules and Crystals: Memories, Switches, and Actuators, Chem. Rev., 2014, 114, 12174–12277.

    Article  CAS  PubMed  Google Scholar 

  16. A. Perrier, F. Maurel and D. Jacquemin, Single Molecule Multiphotochromism with Diarylethenes, Acc. Chem. Res., 2012, 45, 1173–1182.

    Article  CAS  PubMed  Google Scholar 

  17. J. Yoon and A. Prasanna de Silva, Sterically Hindered Diaryl Benzobis(Thiadiazole)S as Effective Photochromic Switches, Angew. Chem., Int. Ed., 2015, 54, 9754–9756.

    Article  CAS  Google Scholar 

  18. M. Martinez-Abadia, B. Robles-Hernandez, B. Villacampa, M. R. de la Fuente, R. Gimenez and M. B. Ros, Cyanostilbene Bent-Core Molecules: A Route to Functional Materials, J. Mater. Chem. C, 2015, 3, 3038–3048.

    Article  CAS  Google Scholar 

  19. V. Palakollu, A. K. Vasu, V. Thiruvenkatam and S. Kanvah, A Sensitive Aiee Probe for Amphiphilic Compounds, New J. Chem., 2016, 40, 4588–4594.

    Article  CAS  Google Scholar 

  20. S. Dhoun, S. Kaur, P. Kaur and K. Singh, A CyanostilbeneBoronate Based Aiee Probe for Hydrogen Peroxide— Application in Chemical Processing, Sens. Actuators, B, 2017, 245, 95–103.

    Article  CAS  Google Scholar 

  21. B.-K. An, J. Gierschner and S. Y. Park, N-Conjugated Cyanostilbene Derivatives: A Unique Self-Assembly Motif for Molecular Nanostructures with Enhanced Emission and Transport, Acc. Chem. Res., 2012, 45, 544–554.

    Article  CAS  PubMed  Google Scholar 

  22. T. Jadhav, B. Dhokale, Y. Patil, S. M. Mobin and R. Misra, Multi-Stimuli Responsive Donor-Acceptor Tetraphenylethylene Substituted Benzothiadiazoles, J. Phys. Chem. C, 2016, 120, 24030–24040.

    Article  CAS  Google Scholar 

  23. B.-K. An, J. Gierschner and S. Y. Park, N-Conjugated Cyanostilbene Derivatives: A Unique Self-Assembly Motif for Molecular Nanostructures with Enhanced Emission and Transport, Acc. Chem. Res., 2011, 45, 544–554.

    Article  PubMed  CAS  Google Scholar 

  24. J. Mei, N. L. C. Leung, R. T. K. Kwok, J. W. Y. Lam and B. Z. Tang, Aggregation-Induced Emission: Together We Shine, United We Soar!, Chem. Rev, 2015, 115, 11718–11940.

    Article  CAS  PubMed  Google Scholar 

  25. L. Zhu and Y. Zhao, Cyanostilbene-Based Intelligent Organic Optoelectronic Materials, J. Mater. Chem. C, 2013, 1, 1059–1065.

    Article  CAS  Google Scholar 

  26. B.-K. An, D.-S. Lee, J.-S. Lee, Y.-S. Park, H.-S. Song and S. Y. Park, Strongly Fluorescent Organogel System Comprising Fibrillar Self-Assembly of a Trifluoromethyl-Based Cyanostilbene Derivative, J. Am. Chem. Soc., 2004, 126, 10232–10233.

    Article  CAS  PubMed  Google Scholar 

  27. J. H. van Esch and B. L. Feringa, New Functional Materials Based on Self-Assembling Organogels: From Serendipity Towards Design, Angew. Chem., Int. Ed., 2000, 39, 2263–2266.

    Article  Google Scholar 

  28. J.-P. Hong, M.-C. Um, S.-R. Nam, J.-I. Hong and S. Lee, Organic Single-Nanofiber Transistors from Organogels, Chem. Commun., 2009, 310–312.

    Google Scholar 

  29. R. G. Weiss, The Past, Present, and Future of Molecular Gels. What Is the Status of the Field, and Where Is It Going?, J. Am. Chem. Soc., 2014, 136, 7519–7530.

    Article  CAS  PubMed  Google Scholar 

  30. A. Ajayaghosh, V. K. Praveen and C. Vijayakumar, Organogels as Scaffolds for Excitation Energy Transfer and Light Harvesting, Chem. Soc. Rev., 2008, 37, 109–122.

    Article  CAS  PubMed  Google Scholar 

  31. F. García, J. Buendía, S. Ghosh, A. Ajayaghosh and L. Sánchez, Luminescent and Conductive Supramolecular Polymers Obtained from an N-Annulated Perylenedicarboxamide, Chem. Commun., 2013, 49, 9278–9280.

    Article  CAS  Google Scholar 

  32. K. K. Kartha, A. Sandeep, V. K. Praveen and A. Ajayaghosh, Detection of Nitroaromatic Explosives with Fluorescent Molecular Assemblies and n-Gels, Chem. Rec., 2015, 15, 252–265.

    Article  CAS  PubMed  Google Scholar 

  33. V. K. Praveen, C. Ranjith and N. Armaroli, White-LightEmitting Supramolecular Gels, Angew. Chem., Int. Ed., 2014, 53, 365–368.

    Article  CAS  Google Scholar 

  34. S. Ghosh, V. K. Praveen and A. Ajayaghosh, The Chemistry and Applications of n-Gels, Annu. Rev. Mater. Res., 2016, 46, 235–262.

    Article  CAS  Google Scholar 

  35. S. Shin, S. H. Gihm, C. R. Park, S. Kim and S. Y. Park, Water-Soluble Fluorinated and Pegylated Cyanostilbene Derivative: An Amphiphilic Building Block Forming SelfAssembled Organic Nanorods with Enhanced Fluorescence Emission, Chem. Mater., 2013, 25, 3288–3295.

    Article  CAS  Google Scholar 

  36. B.-K. An, S. H. Gihm, J. W. Chung, C. R. Park, S.-K. Kwon and S. Y. Park, Color-Tuned Highly Fluorescent Organic Nanowires/Nanofabrics: Easy Massive Fabrication and Molecular Structural Origin, J. Am. Chem. Soc., 2009, 131, 3950–3957.

    Article  CAS  PubMed  Google Scholar 

  37. J. W. Chung, B.-K. An and S. Y. Park, A Thermoreversible and Proton-Induced Gel-Sol Phase Transition with Remarkable Fluorescence Variation, Chem. Mater., 2008, 20, 6750–6755.

    Article  CAS  Google Scholar 

  38. S. Park, J. E. Kwon, S. Y. Park, O. H. Kwon, J. K. Kim, S. J. Yoon, J. W. Chung, D. R. Whang, S. K. Park and D. K. Lee, Crystallization-Induced Emission Enhancement and Amplified Spontaneous Emission from a CF3-Containing Excited-State Intramolecular-Proton-Transfer Molecule, Adv. Opt. Mater., 2017, 5, 1700353.

    Article  CAS  Google Scholar 

  39. F. T. Aparicio, S. Cherumukkil, A. Ajayaghosh and L. Sánchez, Color-Tunable Cyano-Substituted Divinylene Arene Luminogens as Fluorescent n-Gelators, Langmuir, 2016, 32, 284–289.

    Article  CAS  PubMed  Google Scholar 

  40. T. Brotin, R. Utermohlen, F. Fages, H. Bouas-Laurent and J.-P. Desvergne, A Novel Small Molecular Luminescent Gelling Agent for Alcohols, J. Chem. Soc., Chem. Commun., 1991, 416–418.

    Google Scholar 

  41. P. Terech, H. Bouas-Laurent and J.-P. Desvergne, Small Molecular Luminescent Gelling Agent 2,3-Bis-N-Decyloxyanthracene: Rheological and Structural Study, J. Colloid Interface Sci., 1995, 174, 258–263.

    Article  CAS  Google Scholar 

  42. D. López and E. M. García-Frutos, Small Molecular Luminescent Gelling Agent 2,3-Bis-N-Decyloxyanthracene: Rheological and Structural Study, Langmuir, 2015, 31, 8697–8702.

    Article  PubMed  CAS  Google Scholar 

  43. G. M. Kavanagh and S. B. Ross-Murphy, Rheological Characterisation of Polymer Gels, Prog. Polym. Sci., 1998, 23, 533–562.

    Article  CAS  Google Scholar 

  44. C. Dou, D. Chen, J. Iqbal, Y. Yuan, H. Zhang and Y. Wang, Multistimuli-Responsive Benzothiadiazole-Cored Phenylene Vinylene Derivative with Nanoassembly Properties, Langmuir, 2011, 27, 6323–6329.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Board of Research in Nuclear Sciences [37(2)/14/05/2016] for the financial grant, the NIIST Thiruvananthapuram for TEM measurements, and IIT Gandhinagar for overall infrastructural support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sriram Kanvah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katla, J., Nair, A.J.M., Ojha, A. et al. Organogels composed of trifluoromethyl anthryl cyanostyrenes: enhanced emission and self-assembly. Photochem Photobiol Sci 17, 395–403 (2018). https://doi.org/10.1039/c7pp00362e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c7pp00362e

Navigation