Skip to main content
Log in

A turn-on fluorogenic chemosensor for Fe3+ and a Schottky barrier diode with frequency-switching device applications

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A novel highly sensitive and selective fluorescent chemosensor L has been synthesized and characterized by various physicochemical techniques. In 3: 7 water: MeCN (v/v) at pH 7.2 (10 mM HEPES buffer, μ = 0.05 M LiCl), it selectively recognizes Fe3+ through 1 : 1 complexation resulting in a 106-fold fluorescence enhancement and a binding constant of 8.10 × 104 M−1. The otherwise non-fluorescent spirolactam form of the probe results a dual-channel (absorbance and fluorescence) recognition of Fe3+via CHEF (chelation enhanced fluorescence) through the opening of the spirolactam ring. We have also carried out fluorescence titration and anisotropy (r) studies in pure water in the presence of SDS (sodium dodecyl sulphate). Based on the dependence of FI (fluorescence intensity) and r on [SDS] it was proposed that the probe is trapped between two SDS monolayers which again interact among themselves by π⋯π stacking. As a result, there is an increase in FI up to [SDS] ∼ 7 mM–a phenomenon reminiscent of aggregation-induced enhancement of emission (AIEE). Beyond this concentration of SDS (7 mM), micelle formation takes place and the π⋯π stacked polymer now becomes a monomer and is trapped inside the micellar cavity. As a result, there is a decrease in FI at [SDS] > 7 mM. But for anisotropy, it increases with [SDS] beyond 7 mM. Ligand, metal, and SDS interactions are well established through different optical and morphological studies. [L–Fe(NO3)]2+ thin films on FTO (Fluorine-doped Tin Oxide) glass substrates have been designed with the help of the spin-coating deposition technique. The deposited film of thickness 1.6 × 10−5 cm is well characterized by optical band gap calculation with a direct band gap, εg ∼ 1.6 eV. FESEM was also performed for the [L–Fe(NO3)]2+/FTO film. The current–voltage characteristics were measured by the two-probe technique. Light-dependent exciton generation was carried out by taking the top and bottom contacts with graphite paste on FTO and on the [L-Fe(NO3)]2+ films for the measurement of switching behavior. The response ratio curve for the light-induced frequency-switching phenomena has been obtained. The frequency taped here is the oscillation frequency of the photo-generated electron and the hole in an exiton. Thus, the light-induced frequency-switching behavior and Schottky barrier diode characteristics of the material were established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Burdo and J. R. Connor, Biometals, 2003, 16, 63–75.

    Article  CAS  Google Scholar 

  2. J. R. Connor, S. L. Menzies, S. M. St. Martin and E. J. Mufson, J. Neurosci. Res., 1990, 27, 595–611.

    Article  CAS  Google Scholar 

  3. R. R. Crichton, S. Wilmet, R. Legssyer and R. J. Ward, J. Inorg. Biochem., 2002, 91, 9–18.

    Article  CAS  Google Scholar 

  4. R. S. Eisenstein, Annu. Rev. Nutr., 2000, 20, 627–662.

    Article  CAS  Google Scholar 

  5. B. T. Felt and B. Lozoff, J. Nutr., 1996, 126, 693–701.

    Article  CAS  Google Scholar 

  6. C. J. Earley, J. R. Connor, J. L. Beard, E. A. Malecki, D. K. Epstein and R. P. Allen, Neurology, 2000, 54, 1698–1700.

    Article  CAS  Google Scholar 

  7. J. P. Sumner and R. Kopelman, Analyst, 2005, 130, 528–533.

    Article  CAS  Google Scholar 

  8. Y. Ma, W. Luo, P. J. Quinn, Z. Liu and R. C. Hider, J. Med. Chem., 2004, 47, 6349–6362.

    Article  CAS  Google Scholar 

  9. G. E. Tumambac, C. M. Rosencrance and C. Wolf, Tetrahedron, 2004, 60, 11293–11297.

    Article  CAS  Google Scholar 

  10. A. Ali, Q. Zhang, J. Dai and X. Huang, BioMetals, 2003, 16, 285–293.

    Article  CAS  Google Scholar 

  11. Y. Ma, W. Luo, P. J. Quinn, Z. Liu and R. C. Hider, J. Med. Chem., 2004, 47, 6349–6362.

    Article  CAS  Google Scholar 

  12. J. Mao, L. Wang, W. Dou, X. Tang, Y. Yan and W. Liu, Org. Lett., 2007, 9, 4567–4570.

    Article  CAS  Google Scholar 

  13. M. Xu, S. Wu, F. Zeng and C. Yu, Langmuir, 2010, 26, 4529–4534.

    Article  CAS  Google Scholar 

  14. X. Wu, B. Xu, H. Tong and L. Wang, Macromolecules, 2010, 43, 8917–8923.

    Article  CAS  Google Scholar 

  15. S. Das, K. Aich, S. Goswami, C. K. Quah and H. K. Fun, New J. Chem., 2016, 40, 6414–6420.

    Article  CAS  Google Scholar 

  16. R. Kagit, M. Yildirim, O. Ozay, S. Yesilot and H. Ozay, Inorg. Chem., 2014, 53, 2144–2151.

    Article  CAS  Google Scholar 

  17. L. Zhanga, J. Fana and X. Penga, Spectrochim. Acta, Part A, 2009, 73, 398–402.

    Article  Google Scholar 

  18. L. Zhang, J. Wang, J. Fan, K. Guo and X. Peng, Bioorg. Med. Chem. Lett., 2011, 21, 5413–5416.

    Article  CAS  Google Scholar 

  19. N. R. Chereddy, S. Thennarasu and A. B. Mandal, Dalton Trans., 2012, 41, 11753–11759.

    Article  CAS  Google Scholar 

  20. S. Parihar, V. P. Boricha and R. N. Jadeja, Luminescence, 2015, 30, 168–174.

    Article  CAS  Google Scholar 

  21. J. An, T. Li, B. Wang, Z. Yang and M. Yan, J. Coord. Chem., 2014, 67, 921–928.

    Article  CAS  Google Scholar 

  22. Y. Yu, X. Cheng, H. Liu, S. Gu, Z. Jiang, H. Huang and J. Lian, J. Polym. Sci., Part A: Polym. Chem., 2015, 53, 615–621.

    Article  CAS  Google Scholar 

  23. A. Sikdar, S. S. Panja, P. Biswas and S. Roy, J. Fluoresc., 2012, 22, 443–450.

    Article  CAS  Google Scholar 

  24. O. Ozay and H. Ozay, J. Macromol. Sci., Part A: Pure Appl. Chem., 2014, 51, 308–317.

    Article  CAS  Google Scholar 

  25. B. Wang, J. Hai, Z. Liu, Q. Wang, Z. Yang and S. Sun, Angew. Chem., Int. Ed., 2010, 49, 4576–4579.

    Article  CAS  Google Scholar 

  26. M. Deng, S. Wang, C. Liang, H. Shang and S. Jiang, RSC Adv., 2016, 6, 26936–26940.

    Article  CAS  Google Scholar 

  27. Y. Liu, R. Shen, J. Ru, X. Yao, Y. Yang, H. Liu, X. Tang, D. Bai, G. Zhang and W. Liu, RSCAdv., 2016, 6, 111754–111759.

    CAS  Google Scholar 

  28. P. chabera, Y. Liu, O. Prakash, E. Thyrhaug, A. E. Nahhas, A. Honarfar, S. Essen, L. A. Fredin, T. C. B. Harlang, K. S. Kjaer, K. Handrup, F. Ericson, H. Tatsuno, K. Morgan, J. Schnadt, L. Haggstrom, T. Ericsson, A. Sobkowiak, S. Lidin, P. Huang, S. Styring, J. Uhlig, J. Bendix, R. Lomoth, V. Sundstrom, P. Persson and K. Warnmark, Nature, 2017, 543, 695–699.

    Article  CAS  Google Scholar 

  29. A. P. Alivisators, J. Phys. Chem., 1996, 100, 13226–13239.

    Article  Google Scholar 

  30. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd edn, Springer, New York, 2006, p. 67.

    Book  Google Scholar 

  31. C. R. Lohani, J. M. Kim, S. Y. Chung, J. Yoon and K. H. Lee, Analyst, 2010, 135, 2079–2048.

    Article  CAS  Google Scholar 

  32. B. Chakraborty, B. Show, S. Jana, B. C. Mitra, S. K. Maji, B. Adhikary, N. Mukherjee and A. Mondal, Electrochim. Acta, 2013, 94, 7–15.

    Article  CAS  Google Scholar 

  33. R. Bertoni, M. Lorenc, J. Laisney, A. Tissot, A. Moreac, S. F. Matar, M. L. Boillot and E. Collet, J. Mater. Chem. C, 2015, 3, 7792–7801.

    Article  CAS  Google Scholar 

  34. B. Show, N. Mukherjee and A. Mondal, RSC Adv., 2014, 4, 58740–58751.

    Article  CAS  Google Scholar 

  35. S. Jana, N. Mukherjee, B. Chakraborty, B. C. Mitra and A. Mondal, Appl. Surf. Sci., 2014, 300, 154–158.

    Article  CAS  Google Scholar 

  36. K. W. Liu, R. Chen, G. Z. Xing, T. Wu and H. D. Sun, Appl. Phys. Lett., 2010, 96, 023111.

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from the CSIR (Ref. No. 01(2896)/17/EMR-II), the DST (Ref. SR/S1/IC-20/2012), New Delhi and the DST (Ref. No. 809(Sanc)/ST/P/S&T/4G-9/2104) West Bengal is gratefully acknowledged. RB gratefully acknowledges the CSIR for a fellowship (SRF). The authors are thankful to Anupam Nandi, senior research scholar, CEGESS, IIEST, Shibpur for electrical measurements and technical discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahammad Ali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molla, H.A., Bhowmick, R., Islam, A.S.M. et al. A turn-on fluorogenic chemosensor for Fe3+ and a Schottky barrier diode with frequency-switching device applications. Photochem Photobiol Sci 17, 465–473 (2018). https://doi.org/10.1039/c7pp00322f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c7pp00322f

Navigation