Skip to main content
Log in

Effect of the calcination temperature on the photocatalytic efficiency of acidic sol–gel synthesized TiO2 nanoparticles in the degradation of alprazolam

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

We report a comparative study on the photodegradation of the widely used benzodiazepine psychoactive drug alprazolam (8-chloro-1-methyl-6-phenyl-4 H -[1, 2, 4]triazolo[4, 3- a ][1, 4]benzodiazepine, ALP) using direct photolysis, and titanium dioxide photocatalyzed reaction. Titanium dioxide photocatalysts were prepared as nanoparticles by acidic sol–gel methods, calcined at two different temperatures, and their behavior compared with P25 (Degussa type) TiO2. Efficient photodegradation was observed in the photocatalytic process, with over 90% degradation after 90 minutes under optimized conditions. Triazolaminoquinoline, 5-chloro-(5-methyl-4 H -1, 2, 4-triazol-4-yl)benzophenone, triazolbenzophenone, and α-hydroxyalprazolam were identified as the degradation products by fluorescence spectroscopy and HPLC-MS. A comparison with the literature suggests that 8H-alprazolam may also be formed. Good mineralization was observed with TiO2 photocatalysts. ALP photodegradation with TiO2 follows pseudo-first order kinetics, with rates depending on the photocatalyst used. The effects of the quantity of the photocatalyst and concentration of alprazolam were studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. W. Garrison, J. D. Pope and F. R. Allen, GC/MS Analysis of organic compounds in domestic wastewaters, inIdentification and Analysis of Organic Pollutants in Water, Arbor Science Publishers, 1976, pp.517–556

    Google Scholar 

  2. C. Hignite and D. L. Azarnoff, Drugs and drug metabolites as environmental contaminants: Chlorophenoxyisobutyrate and salicylic acid in sewage water effluent, Life Sci., 1977, 20, 337–342.

    Article  CAS  PubMed  Google Scholar 

  3. I. H. Rogers, I. K. Birtwell and G. M. Kruzynski, Organic extractables in municipal wastewater Vancouver, British Columia, Water Pollut. Res. J. Can., 1986, 21, 187–204.

    Article  CAS  Google Scholar 

  4. C. G. Daughton, Non-regulated water contaminants: emerging research, Environ. Impact Assess. Rev., 2004, 24, 711–732.

    Article  Google Scholar 

  5. K. Kummerer, Pharmaceuticals in the Environment, Ann. Rev. Environ. Resour., 2010, 35, 57–75.

    Article  Google Scholar 

  6. T. A. Ternes, Occurrence of Drugs in German Sewage Treatment Plants and Rivers, Water Res., 1998, 32, 3245–3260.

    Article  CAS  Google Scholar 

  7. T. Heberer, Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data, Toxicol. Lett., 2002, 131, 5–17.

    Article  CAS  PubMed  Google Scholar 

  8. K. Fent, A. A. Weston and D. Caminada, Ecotoxicology of human pharmaceuticals, Aquat. Toxicol., 2006, 76, 122–159.

    Article  CAS  PubMed  Google Scholar 

  9. M. Richardson and J. Bowron, The fate of pharmaceutical chemicals in the aquatic environment, J. Pharm. Pharmacol., 1985, 37, 1–12.

    Article  CAS  PubMed  Google Scholar 

  10. C. Daughton and T. Ternes, Pharmaceuticals and personal care products in the environment: agents of subtle change?, Environ. Health Perspect., 1999, 107, 907–937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. B. Ferraria, N. Paxéusb, R. Lo Giudicec, A. Pollioc and J. Garric, Ecotoxicological impact of pharmaceuticals found in treated wastewaters: study of carbamazepine, clofibric acid, and diclofenac, Ecotoxicol. Environ. Saf., 2003, 55, 359–370.

    Article  CAS  Google Scholar 

  12. R. Andreozzi, M. Raffaele and P. Nicklas, Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment, Chemosphere, 2003, 50, 1319–1330.

    Article  CAS  PubMed  Google Scholar 

  13. S. Khan and J. Ongerth, Modelling of pharmaceutical residues in Australian sewage by quantities of use and fugacity calculations, Chemosphere, 2004, 54, 355–367.

    Article  CAS  PubMed  Google Scholar 

  14. M. M. Huber, A. Göbel, A. Joss, N. Hermann, D. Löffler, C. Mcardell, A. Ried, H. Siegrist, T. A. Tiernes, U. von Gunten, Oxidation of pharmaceuticals during ozonation of municipal wastewater effluents: a pilot study, Environ. Sci. Technol., 2005, 39, 4290–4299.

    Article  CAS  PubMed  Google Scholar 

  15. K. Kujawa-Roeleveld and G. Zeeman, Elimination of pharmaceuticals from concentrated wastewater, First Switch Scientific Meeting, University of Birmingham, UK, 2006

    Google Scholar 

  16. A. Ginebreda, I. Muñoz, M. Lopez de Alda, R. Brix, J. López-Doval, D. Barceló, Environmental risk assessment of pharmaceuticals in rivers: Relationships between hazard indexes and aquatic macroinvertebrate diversity indexes in Llobregat River (NE Spain), Environ. Int., 2009, 36, 153–162.

    Article  PubMed  CAS  Google Scholar 

  17. V. Cunningham, C. Perino, V. D’Aco, A. Hartmann and R. Bechter, Human health risk assessment of carbamazepine in surface waters of North America and Europe, Regul. Toxicol. Pharmacol., 2010, 56, 343–351.

    Article  CAS  PubMed  Google Scholar 

  18. T. V. Madureira, J. C. Barreiro, M. J. Rocha, E. Rocha, Q. B. Cass and M. E. Tiritan, Spatiotemporal distribution of pharmaceuticals in the Douro River estuary (Portugal), Sci. Total Environ., 2010, 408, 5513–5520.

    Article  CAS  PubMed  Google Scholar 

  19. S. Harrad, Persistent Organic Pollutants, Wiley-Blackwell, 2010

    Google Scholar 

  20. Organic Pollutants in the Water Cycle: Properties, Occurrence, Analysis and Environmental Relevance of Polar Compounds, ed. T. Reemtsma and M. Jekel, Wiley-VCH, 2006

    Google Scholar 

  21. V. Calisto and V. I. Esteves, Psychiatric pharmaceuticals in the environment, Chemosphere, 2009, 77, 1257–1274.

    Article  CAS  PubMed  Google Scholar 

  22. T. Kosjek, S. Pedro, M. Zupanc, M. Z. Hren, T. L. Dragicevic, D. Zigon, B. Kompare and E. Heath, Environmental occurrence, fate and transformation of benzodiazepines in water treatment, Water Res., 2012, 46, 355–368.

    Article  CAS  PubMed  Google Scholar 

  23. International Narcotics Control Board Psychotropic Substances–Statistics for 2011, United Nations, New York, 2012

  24. S. Esteban, Y. Valcárcel, M. Catalá and M. G. Castromil, Psychoactive pharmaceutical residues in the watersheds of Galicia (Spain), Gac. Sanit., 2012, 26 5, 457–459.

    Article  PubMed  Google Scholar 

  25. F. Gracia-Lor, J. Sancho, F. Hernández, Multi-class determination of around 50 pharmaceuticals, including 26 antibiotics, in environmental and wastewater samples by ultra-high performance liquid chromatography-tandem mass spectrometry, J. Chromatogr., A, 2011, 1218, 2264–2275.

    Article  CAS  Google Scholar 

  26. Y. Valcárcel, F. Martínez, S. González-Alonso, Y. Segura, M. Catalá, R. Molina, J. C. Montero-Rubio, N. Mastroianni, M. López de Alda, C. Postigo, D. Barceló, Drugs of abuse in surface and tap waters of the Tagus River basin: Heterogeneous photo-Fenton process is effective in their degradation, Environ. Int., 2012, 41, 35–43.

    Article  PubMed  CAS  Google Scholar 

  27. N. S. Nudelman and C. G. Cabrera, Spectrofluorimetric assay for the photodegradation products of alprazolam, J. Pharm. Biomed. Anal., 2002, 30, 887–893.

    Article  CAS  PubMed  Google Scholar 

  28. N. S. Nudelman and C. G. Cabrera, Isolation and Structural Elucidation of Degradation Products of Alprazolam: Photostability Studies of Alprazolam Tablet, J. Pharm. Sci., 2002, 91, 1274–1286.

    Article  CAS  PubMed  Google Scholar 

  29. C. G. Cabrera, R. G. Waisbaum and N. S. Nudelman, Kinetic and mechanistic studies on the hydrolysis and photodegradation of diazepam and alprazolam, J. Phys. Org. Chem., 2005, 18, 156–161.

    Article  CAS  Google Scholar 

  30. V. Calisto, R. M. Domingues and V. I. Esteves, Photodegradation of psychiatric pharmaceuticals in a aquatic environments–Kinetics and photodegradation products, Water Res., 2011, 45, 6097–6106.

    Article  CAS  PubMed  Google Scholar 

  31. G. Hey, R. Grabic, A. Ledin, J. L. Jansen and H. R. Andersen, Oxidation of pharmaceuticals by chlorine dioxide in biologically treated wastewater, Chem. Eng. J., 2012, 185, 236–242.

    Article  CAS  Google Scholar 

  32. S. Ostadhadi-Dehkordi, M. Tabatabaei-Sameni, H. Forootanfar, S. Kolahdouz, M. Ghazi-Khansari and M. Faramarzi, Degradation of some benzodiazepines by laccase-mediated system in aqueous solution, Bioresour. Technol., 2012, 125, 344–347.

    Article  CAS  PubMed  Google Scholar 

  33. M. A. Sousa, C. Gonçalves, V. J. P. Vilar, R. A. R. Boaventura and M. F. Alpendurada, Suspended TiO2-assisted photocatalytic degradation of emerging contaminants in a municipal WWTP effluent using a solar pilot plant with CPCs, Chem. Eng. J., 2012, 198, 301–309.

    Article  CAS  Google Scholar 

  34. M. E. Azenha, A. Romeiro and M. Sarakha, Photodegradation of pesticides and photocatalysts in the treatment of water and waste, inApplied Photochemistry, ed. R. C. Evans, P. Douglas and H. D. Burrows, Springer, Dordrecht, 2013, ch. 6

    Google Scholar 

  35. A. R. Ribeiro, O. C. Nunes, M. F. R. Pereira, A. M. T. Silva, An overview on the advanced oxidation process applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU, Environ. Int., 2015, 75, 33–51.

    Article  CAS  PubMed  Google Scholar 

  36. M. L. Canle, M. I. Fernández, C. Martínez and J. A. Santaballa, (Re)Greening photochemistry: using light for degrading persistent organic pollutants, Rev. Environ. Sci. Biotechnol., 2012, 11, 213–221.

    Article  CAS  Google Scholar 

  37. M. L. Canle, M. I. Fernández, C. Martínez and J. A. Santaballa, Photochemistry for Pollution Abatement, Pure Appl. Chem., 2013, 85, 1437–1449.

    Article  CAS  Google Scholar 

  38. J. Trawiński, R. Skibiński, Studies on photodegradation process of psychotropic drugs: a review, Environ. Sci. Pollut. Res., 2017, 24, 1152–1199.

    Article  CAS  Google Scholar 

  39. N. Finčur, J. B. Krstić, F. S. Šibul, D. V. Šojić, V. N. Despotović, N. D. Banić, J. R. Agbaba, B. F. Abramović, Removal of alprazolam from aqueous solution by heterogeneous photocatalyst: Influencing factors, intermediates, and products, Chem. Eng. J., 2017, 307, 1105–1115.

    Article  CAS  Google Scholar 

  40. N. Tomić, M. Grujić-Brojčin, N. Finčur, B. Abramović, B. Simović, J. Krstić, B. Matović, M. Šćepanović, Photocatalytic degradation of alprazolam in water suspension of brookite type TiO2 nanopowders prepared using hydrothermal route, Mater. Chem. Phys., 2015, 163, 518–528.

    Article  CAS  Google Scholar 

  41. T. B. Ivetić, N. L. Finčur, Lj. R. Đačanin, B. F. Abramović, S. R. Lukić-Petrović, Ternary and coupled binary zinc tin oxide nanopowders: Synthesis, characterization, and potential application in photocatalytic processes, Mater. Res. Bull., 2015, 62, 114–121.

    Article  CAS  Google Scholar 

  42. T. B. Ivetić, M. R. Dimitrievska, N. L. Finčur, Lj. R. Đačanin, I. O. Gúth, B. F. Abramović, S. R. Lukić-Petrović, Effect of annealing temperature on structural and optical properties of Mg-doped ZnO nanoparticles and their photocatalytic efficiency in alprazolam degradation, Ceram. Int., 2014, 40, 1545–1552.

    Article  CAS  Google Scholar 

  43. A. Golubović, N. Tomić, N. Finčur, B. Abramović, I. Veljković, J. Zdravković, M. Grujić-Brojčin, B. Babić, B. Stojadinović, M. Šćepanović, Synthesis of pure and La-doped anatase nanopowders by sol-gel and hydrothermal methods and their efficiency in photocatalytic degradation of alprazolam, Ceram. Int., 2014, 40, 13409–13418.

    Article  CAS  Google Scholar 

  44. A. L. Patterson, The Scherrer formula for X-Ray particle size determination, Phys. Rev., 1939, 56, 978–982.

    Article  CAS  Google Scholar 

  45. R. López, R. Gómez, Band-gap energy estimation from diffuse reflectance measurements on sol-gel and commercial TiO2: a comparative study, J. Sol-Gel Sci. Technol., 2012, 61, 1–7.

    Article  CAS  Google Scholar 

  46. A. Mohd, A. A. P. Khan, S. Bano and K. S. Siddiqi, UV-absorption and fluorimetric methods for the determination of alprazolam in pharmaceutical formulations, Arabian J. Chem., 2013, 6, 269–278.

    Article  CAS  Google Scholar 

  47. A. R. Gonsalves, M. Pineiro, J. M. Martins, P. A. Barata and J. C. Menezes, Identification of Alprazolam and its degradation products using LC-MS-MS, ARKIVOC, 2010, 128–141.

    Google Scholar 

  48. B. Castañeda, W. Ortiz-Cala, C. Gallardo-Cabrera and N. S. Nudelman, Stability studies of alprazolam tablets: effects of chemical interactions with some excipients in pharmaceutical solid preparations, J. Phys. Org. Chem., 2009, 22, 807–814.

    Article  CAS  Google Scholar 

  49. A. L. Huidobro and C. Barbas, Analytical study proving alprazolam degradation to its main impurity triazolaminoquinoleine through Maillard reaction, Anal. Bioanal. Chem., 2009, 394, 1349–1359.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreia Romeiro.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c6pp00447d

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romeiro, A., Freitas, D., Emília Azenha, M. et al. Effect of the calcination temperature on the photocatalytic efficiency of acidic sol–gel synthesized TiO2 nanoparticles in the degradation of alprazolam. Photochem Photobiol Sci 16, 935–945 (2017). https://doi.org/10.1039/c6pp00447d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c6pp00447d

Navigation