Issue 3, 2017

Garcinol sensitizes breast cancer cells to Taxol through the suppression of caspase-3/iPLA2 and NF-κB/Twist1 signaling pathways in a mouse 4T1 breast tumor model

Abstract

Breast cancer is a significant threat to women's health and has high incidence and mortality. Metastasis in breast cancer patients is a major cause of cancer deaths among women worldwide. Clinical experience suggests that patients with metastatic triple-negative breast cancer (TNBC) relapse quickly and often have chemotherapy resistance. Taxol (paclitaxel) is an effective chemotherapeutic agent for treating metastatic breast cancer, but Taxol at high doses can cause adverse effects and recurrent resistance. Thus, the selection of a synergistic combination therapy is recommended, which is safer and has a more significant response rate than monotherapy. In this study, our strategy is to combine a low dose of Taxol (5 mg kg−1, i.p.) and garcinol (1 mg kg−1, i.g.) to investigate the synergistic antitumor and anti-metastasis effects and to determine the underlying mechanisms of these effects in vivo. For the in vivo study, metastasis-specific mouse mammary carcinoma 4T1 cells were inoculated in Balb/c mice to establish an orthotopic primary tumor and spontaneous metastasis model. Tumor growth and metastases were monitored. The mechanisms of synergistic efficacies were evaluated at different signaling pathways, including proliferation, survival, and epithelial–mesenchymal transition (EMT)-regulated metastatic propensity. We demonstrated that garcinol combined with Taxol significantly increased the therapeutic efficacy when compared with either treatment alone. The synergistic antitumor and anti-metastasis effects were enhanced primarily through the induction of Taxol-stimulated G2/M phase arrest and the inhibition of caspase-3/cytosolic Ca2+-independent phospholipase A2 (iPLA2) and nuclear factor-κB (NF-κB)/Twist-related protein 1 (Twist1) drive downstream events including tumor cell repopulation, survival, inflammation, angiogenesis, invasion, and EMT. Our current findings provide the first experimental evidence that a combination of a low dose of Taxol and garcinol is a promising therapeutic strategy for controlling advanced or metastatic breast cancer. Finally, our results also point to the possible role of NF-κB/Twist1 and caspase-3/iPLA2 signaling pathways as biomarkers to predict the tumor response to treatment.

Graphical abstract: Garcinol sensitizes breast cancer cells to Taxol through the suppression of caspase-3/iPLA2 and NF-κB/Twist1 signaling pathways in a mouse 4T1 breast tumor model

Article information

Article type
Paper
Submitted
27 Oct 2016
Accepted
05 Jan 2017
First published
10 Jan 2017

Food Funct., 2017,8, 1067-1079

Garcinol sensitizes breast cancer cells to Taxol through the suppression of caspase-3/iPLA2 and NF-κB/Twist1 signaling pathways in a mouse 4T1 breast tumor model

S. Tu, Y. Chiou, N. Kalyanam, C. Ho, L. Chen and M. Pan, Food Funct., 2017, 8, 1067 DOI: 10.1039/C6FO01588C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements