Issue 64, 2015

Highly sensitive and humidity-independent ethanol sensors based on In2O3 nanoflower/SnO2 nanoparticle composites

Abstract

As an ethanol sensing material, the composites of In2O3–SnO2 were composed of In2O3 microflowers and SnO2 nanoparticles. Both In2O3 microflowers and SnO2 nanoparticles were synthesized by hydrothermal method and then mixed in an ultrasonic environment. The morphology and phase composition of the as-synthesized samples were characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The results on gas sensing properties showed that when the mass ratio of In2O3 and SnO2 was 2 : 1, the sensor based on the as-prepared In2O3–SnO2 composite exhibited high response and good selectivity to ethanol at 250 °C. The response to 100 ppm ethanol gas was 53.2. UV illumination stabilized the responses of the sensors while the relative humidity increased. The gas sensing mechanism proposed was that the addition of SnO2 to In2O3 enhanced the catalytic activity for the ethanol reaction, which changed the electrical resistance of the materials. Besides, the morphology was helpful to the gas reaction on the surface of the sensing materials.

Graphical abstract: Highly sensitive and humidity-independent ethanol sensors based on In2O3 nanoflower/SnO2 nanoparticle composites

Article information

Article type
Paper
Submitted
21 Apr 2015
Accepted
08 Jun 2015
First published
08 Jun 2015

RSC Adv., 2015,5, 52252-52258

Highly sensitive and humidity-independent ethanol sensors based on In2O3 nanoflower/SnO2 nanoparticle composites

Y. Liu, S. Yao, Q. Yang, P. Sun, Y. Gao, X. Liang, F. Liu and G. Lu, RSC Adv., 2015, 5, 52252 DOI: 10.1039/C5RA07213A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements