Skip to main content
Log in

Photochemical control of microphase structure in biocompatible polyester membranes generated by ultraviolet irradiation

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The morphologies of PEMA-RB/PHEMA semi-interpenetrating polymeric network (semi-IPN) blended membranes prepared via ultraviolet (UV) promoted in situ photopolymerization were investigated using laser scanning confocal fluorescence microscopy (LSCFM). The results show that the semi-IPN morphology generated through UV light irradiation-induced microphase separation is considerably dependent on the relative rates of the photochemical reaction and microphase separation in the reactive precursor mixtures, which are determined by reactive dynamic factors. Changing the dynamic conditions, such as the UV light intensity, content of cross-linker and concentration of HEMA photopolymerization monomer resulted in a corresponding alteration of the morphological structure in the semi-IPN membranes. The hierarchical morphology appearing in the PEMA-RB/PHEMA semi-IPN should be related to the inhomogeneous photoreaction dynamics of the mixed system. Desired morphologies of the semi-IPN blend membranes can be obtained by controlling the corresponding dynamic conditions of both the photochemical reaction and microphase separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. B. Schneider, A. English, M. Abraham, R. Zaharias, C. Stanford And and J. Keller, The effect of hydrogel charge density on cell attachment, Biomaterials, 2004, 2515, 3023–3028.

    Article  CAS  Google Scholar 

  2. M. Santin, S. J. Huang, S. Iannace, L. Ambrosio, L. Nicolais and G. Peluso, Synthesis and characterization of a new interpenetrated poly(2-hydroxyethylmethacrylate)-gelatin composite polymer, Biomaterials, 1996, 1715, 1459–1467.

    Article  CAS  Google Scholar 

  3. L. G. Annalisa, S. Chiara, E. Annaclaudia, D. Antonella and D. R. Alfredo, Novel poly(HEMA-co-METAC)/alginate semi-interpenetrating hydrogels for biomedical applications: Synthesis and characterization, J. Biomed. Mater. Res., 2009, 90A1, 292–302.

    Article  Google Scholar 

  4. F. Rosso, A. Barbarisi, M. Barbarisi, O. Petillo, S. Margarucci, A. Calarco and G. Peluso, New polyelectrolyte hydrogels for biomedical applications, Mater. Sci. Eng., C, 2003, 233, 371–376.

    Article  Google Scholar 

  5. R. Jeyanthi and K. P. Rao, In vivo biocompatibility of collagen poly(hydroxyethyl metthacrylate hydrogels, Biomaterials, 1990, 114, 238–243.

    Article  CAS  Google Scholar 

  6. J. W. Lee, S. Y. Kim, S. S. Kim, Y. M. Lee, K. H. Lee and S. J. Kim, Synthesis and characteristics of interpenetrating polymer network hydrogel composed of chitosan and poly(acrylic acid), J. Appl. Polym. Sci., 1999, 731, 113–120.

    Article  CAS  Google Scholar 

  7. L. Ambrosio, P. A. Netti, S. Iannace, S. J. Huang and L. Nicolais, Composite hydrogels for intervertebral disc prostheses, J. Mater. Sci. Mater. Med., 1996, 75, 251–254.

    Article  CAS  Google Scholar 

  8. L. V. Karabanova, S. V. Mikhalovsky and W. L. Andrew, Gradient semi-interpenetrating polymer networks based on polyurethane and poly(2-hydroxyethyl methacrylate) for biomedical applications, J. Mater. Chem., 2012, 2216, 7919–7928.

    Article  CAS  Google Scholar 

  9. V. K. Lyudmyla, B. Gisele, S. Gerard and S. Isabelle, Phase separation in the polyurethane/poly(2-hydroxyethyl methacrylate) semi-interpenetrating polymer networks synthesized by different ways, Polym. Eng. Sci., 2008, 483, 588–597.

    Article  Google Scholar 

  10. J. S. Turner and Y. L. Cheng, Morphology of PDMS-PMAA IPN membranes, Macromolecules, 2003, 366, 1962–1966.

    Article  CAS  Google Scholar 

  11. M. Chen, J. Zhu, G. Qi, C. He and H. Wang, Anisotropic hydrogels fabricated with directional freezing and radiation-induced polymerization and crosslinking method, Mater. Lett., 2012, 89, 104–107.

    Article  CAS  Google Scholar 

  12. W. F. Schroeder, M. I. Aranguren, G. E. Elicabe and J. Borrajo, 12 Free-radical polymerization induced macrophase separation in poly(methyl methacrylate)/dimethacrylate blends: Experiment and modeling, Eur. Polym. J., 2013, 4912, 3956–3965.

    Article  CAS  Google Scholar 

  13. T. Inoue, Reaction-induced phase decomposition in polymer blends, Prog. Polym. Sci., 1995, 20, 119–153.

    Article  CAS  Google Scholar 

  14. D. J. Duffy, H. D. Stidham, S. L. Hsu, S. Sasaki, A. Takahara and T. Kajiyama, Effect of polyester structure on the interaction parameters and morphology development of ternary blends: Model for high performance adhesives and coatings, J. Mater. Sci., 2002, 3722, 4801–4809.

    Article  CAS  Google Scholar 

  15. Y. G. Jeong, H. Tomoko, S. L. Hsu and C. W. Paul, Factors influencing curing Behavior in phase-separated structures, Macromolecules, 2005, 387, 2889–2896.

    Article  CAS  Google Scholar 

  16. C. W. Wang and M. G. Moffitt, Use of block copolymer-stabilized cadmium sulfide quantum dots as novel tracers for laser scanning confocal fluorescence imaging of blend morphology in polystyrene/poly(methyl methacrylate) films, Langmuir, 2005, 216, 2465–2473.

    Article  CAS  Google Scholar 

  17. J. D. Tong, M. Moffitt, X. Y. Huang, M. A. Winnik and R. A. Ryntz, Use of a dye-labeled ethylene-butene copolymer as a tracer in laser scanning confocal fluorescence microscopy studies of thermoplastic olefins, J. Polym. Sci., Part A: Polym. Chem., 2001, 391, 239–252.

    Article  CAS  Google Scholar 

  18. M. Moffitt, Y. Rharbi, H. Li and M. A. Winnik, Novel morphology evolution in thick films of a polymer blend, Macromolecules, 2002, 359, 3321–3324.

    Article  CAS  Google Scholar 

  19. M. Moffitt, Y. Rharbi, J. D. Tong, J. P. S. Farhina, H. Li, M. A. Winnik and H. Zahalka, Surface-directed morphology evolution in ternary blends of polyethylene, polypropylene, and ethylene-propylene copolymer: A study by laser scanning confocal fluorescence microscopy, J. Polym. Sci., Part B: Polym. Phys., 2003, 416, 637–654.

    Article  CAS  Google Scholar 

  20. I. R. Epstein and J. A. Pojman, An Introduction to Nonlinear Chemical Dynamics, Oxford University Press, London, 1998.

    Book  Google Scholar 

  21. M. J. He, Y. Liu, Y. Feng, M. Jiang and C. C. Han, Spinodal decomposition in a hydrogen-bonded polymer blend, Macromolecules, 1991, 242, 464–473.

    Article  CAS  Google Scholar 

  22. M. M. Coleman, J. F. Graft and P. C. Painter, Specific Interactions and Miscibility of Polymer Blends, Technomic, Lancaster, PA, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kangming Nie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Pang, W., Tian, L. et al. Photochemical control of microphase structure in biocompatible polyester membranes generated by ultraviolet irradiation. Photochem Photobiol Sci 15, 517–524 (2016). https://doi.org/10.1039/c5pp00181a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c5pp00181a

Navigation