Issue 7, 2015

Rough hypercuboid based supervised clustering of miRNAs

Abstract

The microRNAs are small, endogenous non-coding RNAs found in plants, animals, and some viruses, which function in RNA silencing and post-transcriptional regulation of gene expression. It is suggested by various genome-wide studies that a substantial fraction of miRNA genes is likely to form clusters. The coherent expression of the miRNA clusters can then be used to classify samples according to the clinical outcome. In this regard, a new clustering algorithm, termed as rough hypercuboid based supervised attribute clustering (RH-SAC), is proposed to find such groups of miRNAs. The proposed algorithm is based on the theory of rough set, which directly incorporates the information of sample categories into the miRNA clustering process, generating a supervised clustering algorithm for miRNAs. The effectiveness of the new approach is demonstrated on several publicly available miRNA expression data sets using support vector machine. The so-called B.632+ bootstrap error estimate is used to minimize the variability and biasedness of the derived results. The association of the miRNA clusters to various biological pathways is also shown by doing pathway enrichment analysis.

Graphical abstract: Rough hypercuboid based supervised clustering of miRNAs

Article information

Article type
Paper
Submitted
26 Mar 2015
Accepted
14 May 2015
First published
14 May 2015

Mol. BioSyst., 2015,11, 2068-2081

Rough hypercuboid based supervised clustering of miRNAs

S. Paul and J. Vera, Mol. BioSyst., 2015, 11, 2068 DOI: 10.1039/C5MB00213C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements