Issue 26, 2015

Incorporating a hole-transport material into the emissive layer of solid-state light-emitting electrochemical cells to improve device performance

Abstract

Solid-state light-emitting electrochemical cells (LECs) based on ionic transition metal complexes (iTMCs) have several advantages such as high efficiency, low operation voltage and simple device structure. To improve the device efficiency of iTMC-based LECs for practical applications, improving the carrier balance to achieve a centered recombination zone would be an important issue. In this work, incorporating a hole-transport material (HTM) into the emissive layer of iTMC-based LECs is shown to improve device performance. When mixed with an HTM (12%), the LECs based on a Ru complex exhibit 1.9× and 1.5× enhancement in peak light output and peak external quantum efficiency (EQE) as compared to neat-film devices. Furthermore, over 2× enhancement in stabilized EQE can be achieved in LECs mixed with an HTM. It is attributed to that a more centered recombination zone in LECs mixed with an HTM is beneficial in reducing exciton quenching in the recombination zone approaching extended doped layers. Estimating the temporal evolution of the recombination zone in the LECs mixed with an HTM by employing the microcavity effect is demonstrated to confirm the physical origin for improved device performance. These results reveal that incorporating of an HTM in the emissive layer of LECs based on an iTMC is a feasible way to improve carrier balance and thus enhance light output and device efficiency.

Graphical abstract: Incorporating a hole-transport material into the emissive layer of solid-state light-emitting electrochemical cells to improve device performance

Article information

Article type
Paper
Submitted
08 Apr 2015
Accepted
28 May 2015
First published
15 Jun 2015

Phys. Chem. Chem. Phys., 2015,17, 17253-17259

Incorporating a hole-transport material into the emissive layer of solid-state light-emitting electrochemical cells to improve device performance

P. Huang, G. Krucaite, H. Su and S. Grigalevicius, Phys. Chem. Chem. Phys., 2015, 17, 17253 DOI: 10.1039/C5CP02034D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements