Skip to main content
Log in

Gramicidin conformational changes during riboflavin photosensitized oxidation in solution and the effect of N-methylation of tryptophan residues

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

In the present work, we evaluated the role of gramicidin conformation in its photosensitized oxidation in organic solvents when irradiated in the presence of riboflavin. Gramicidin conformation has been described as monomeric in trifluoroethanol and as an intertwined dimer in methanol. Gramicidin showed extensive photo-oxidation upon irradiation in the presence of riboflavin in both solvents, and tryptophan residues were identified to be involved. We synthesized a gramicidin derivative methylated at position 1 of the indole ring of tryptophan to assess its effect on gramicidin conformation and photo-oxidation. Methylated gramicidin showed very similar absorption and emission spectra to gramicidin, but different conformations were identified by circular dichroism spectra. Upon irradiation, N-methylated tryptophan residues in the gramicidin derivative were not easily photo-oxidized by riboflavin compared to gramicidin. Circular dichroism spectra for gramicidin in methanol changed significantly upon irradiation in the presence of riboflavin indicating a change in conformation, while in trifluoroethanol no such changes were observed. Time-resolved fluorescence and anisotropy studies showed that oxidized gramicidin in methanol had shorter fluorescence lifetimes and a shorter rotational correlation time compared to non-irradiated gramicidin. Additionally, SDS-PAGE analysis showed a marked change in the electrophoretic pattern, whereas the high-molecular-weight bands disappeared upon irradiation. We interpret all these results in terms of a riboflavin photosensitized shift in gramicidin conformation from intertwined to monomeric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. A. Wallace, Gramicidin Channels and Pores, Annu. Rev. Biophys. Biophys. Chem., 1990, 19, 127–157.

    Article  PubMed  CAS  Google Scholar 

  2. R. E. Koeppe II and O. S. Anderson, Engineering the Gramicidin Channel, Annu. Rev. Biophys. Biomol. Struct., 1996, 25, 231–258.

    Article  PubMed  CAS  Google Scholar 

  3. G. V. Miloshevsky and P. C. Jordan, Permeation in Ion Channels: The Interplay of Structure and Theory, Trends Neurosci., 2004, 27, 308–314.

    Article  PubMed  CAS  Google Scholar 

  4. D. W. Urry, The Gramicidin A Transmembrane Channel: A Proposed pi(L,D) Helix, Proc. Natl. Acad. Sci. U. S. A., 1971, 68, 672–676.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. W. R. Veatch, E. T. Fossel and E. R. Blout, The Conformation of Gramicidin A, Biochemistry, 1974, 13, 5249–5256.

    Article  PubMed  CAS  Google Scholar 

  6. G. N. Ramachnandran and R. Chandrasekaran, Conformation of Peptide Chains Containing Both L- and D-residues. I. Helical Structures With Alternating L- and D-residues With Special Reference to the LD-ribbon and the LD-helices, Indian J. Biochem. Biophys., 1972, 9, 1–11.

    PubMed  CAS  Google Scholar 

  7. B. A. Wallace, Gramicidin A Adopts Distinctly Different Conformations in Membranes and in Organic Solvents, Biopolymers, 1983, 22, 397–402.

    Article  CAS  Google Scholar 

  8. P. V. LoGrasso, F. Moll III and T. A. Cross, Solvent History Dependence of Gramicidin A Conformations in Hydrated Lipid Bilayers, Biophys. J., 1988, 54, 259–267.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. W. R. Veatch and E. R. Blout, The Aggregation of Gramicidin A in Solution, Biochemistry, 1974, 13, 5257–5264.

    Article  PubMed  CAS  Google Scholar 

  10. J. A. Killian, K. U. Prasad, D. Hains and D. W. Urry, The Membrane as an Environment of Minimal Interconversion. A Circular Dichroism Study on the Solvent Dependence of the Conformational Behavior of Gramicidin in Diacylphosphatidylcholine Model Membranes, Biochemistry, 1988, 27, 4848–4855.

    Article  PubMed  CAS  Google Scholar 

  11. D. A. Kelkar and A. Chattopadhyay, Membrane Interfacial Localization of Aromatic Amino Acids and Membrane Protein Function, J. Biosci., 2006, 31, 297–302.

    Article  PubMed  CAS  Google Scholar 

  12. O. S. Andersen, D. V. Greathouse, L. L. Providence, M. D. Becker, R. E. Koeppe II, Importance of Tryptophan Dipoles for Protein Function: 5-Fluorination of Tryptophans in Gramicidin A Channels, J. Am. Chem. Soc., 1998, 120, 5142–5146.

    Article  CAS  Google Scholar 

  13. A. Chattopadhyay, S. S. Rawat, D. V. Greathouse, D. A. Kelkar, R. E. Koeppe II, Role of Tryptophan Residues in Gramicidin Channel Organization and Function, Biophys. J., 2008, 95, 166–175.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. S. S. Rawat, D. A. Kelkar and A. Chattopadhyay, Monitoring Gramicidin Conformations in Membranes: A Fluorescence Approach, Biophys. J., 2004, 87, 831–843.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. A. M. Oconnell, R. E. Koeppe II and O. S. Andersen, Kinetics of Gramicidin Channel Formation in Lipid Bilayers - Transmembrane Monomer Association, Science, 1990, 250, 1256–1259.

    Article  CAS  Google Scholar 

  16. R. R. Ketchem, W. Hu and T. A. Cross, High-Resolution Conformation of Gramicidin A in a Lipid Bilayer by Solid-state NMR, Science, 1993, 261, 1457–1460.

    Article  PubMed  CAS  Google Scholar 

  17. S. Mukherjee and A. Chattopadhyay, Motionally Restricted Tryptophan Environments at the Peptide-lipid Interface of Gramicidin Channels, Biochemistry, 1994, 33, 5089–5097.

    Article  PubMed  CAS  Google Scholar 

  18. P. Daumas, F. Heitz, L. Ranjalahy-Rasoloarijao and R. Lazaro, Gramicidin A Analogs: Influence of the Substitution of the Tryptophans by Naphthylalanines, Biochimie, 1989, 71, 77–81.

    Article  PubMed  CAS  Google Scholar 

  19. C. Barth and G. Stark, Radiation Inactivation of Ion Channels Formed by Gramicidin A. Protection by Lipid Double Bonds and by Alpha-Tocopherol, Biochim. Biophys. Acta, 1991, 1066, 54–58.

    Article  PubMed  CAS  Google Scholar 

  20. A. A. Sobko, M. A. Vigasina, T. I. Rokitskaya, E. A. Kotova, S. D. Zakharov, W. A. Cramer and Y. N. Antonenko, Chemical and Photochemical Modification of Colicin E1 and Gramicidin A in Bilayer Lipid Membranes, J. Membr. Biol., 2004, 199, 51–62.

    Article  PubMed  CAS  Google Scholar 

  21. M. Sträble and G. Stark, Photodynamic Inactivation of an Ion Channel: Gramicidin A, Photochem. Photobiol., 1992, 55, 461–463.

    Article  Google Scholar 

  22. T. I. Rokitskaya, Y. N. Antonenko and E. A. Kotova, The Interaction Of Phthalocyanine With Planar Lipid Bilayers. Photodynamic Inactivation Of Gramicidin Channels, FEBS Lett., 1993, 329, 332–335.

    Article  PubMed  CAS  Google Scholar 

  23. L. Kunz, U. Zeidler, K. Haegele, M. Przybylski and G. Stark, Photodynamic and Radiolytic Inactivation of Ion Channels Formed by Gramicidin A: Oxidation and Fragmentation, Biochemistry, 1995, 34, 11895–11903.

    Article  PubMed  CAS  Google Scholar 

  24. T. I. Rokitskaya, M. Block, Y. N. Antonenko, E. A. Kotova and P. Pohl, Photosensitizer Binding to Lipid Bilayers as a Precondition for the Photoinactivation of Membrane Channels, Biophys. J., 2000, 78, 2572–2580.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. E. A. Dutseva, Y. N. Antonenko, E. A. Kotova, J. R. Pfeifer and U. Koert, Sensitized Photoinactivation Of Minigramicidin Channels In Bilayer Lipid Membranes, Biochim. Biophys. Acta, 2007, 1768, 1230–1237.

    Article  PubMed  CAS  Google Scholar 

  26. D. I. Pattinson, A. S. Rahmanto and M. J. Davies, Photo-oxidation of Proteins, Photochem. Photobiol. Sci., 2012, 11, 38–53.

    Article  Google Scholar 

  27. I. Ferrer and E. Silva, Study of a Photo-induced Lysozyme-Riboflavin Bond, Radiat. Environ. Biophys., 1985, 24, 63–70.

    Article  PubMed  CAS  Google Scholar 

  28. E. Silva and A. M. Edwards, Flavins: Photochemistry and Photobiology, Royal Society of Chemistry, Cambridge, UK, 2006.

    Google Scholar 

  29. Y. Zhang, H. Görner, Flavin-sensitized Photo-oxidation of Lyzozyme and Serum Albumin, Photochem. Photobiol., 2009, 85, 943–948.

    Article  PubMed  CAS  Google Scholar 

  30. E. G. Perez, B. K. Cassels, C. Eibl and D. Gundisch, Synthesis and Evaluation of N1-alkylindole-3-ylalkylammonium Compounds as Nicotinic Acetylcholine Receptor Ligands, Bioorg. Med. Chem., 2012, 20, 3719–3727.

    Article  PubMed  CAS  Google Scholar 

  31. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, New York, 4th edn, 2006.

    Book  Google Scholar 

  32. M.-P. Pileni, P. Walrant and R. Santus, Electronic Properties of N-Formylkynurenine and Related Compounds, J. Phys. Chem., 1976, 80, 1804–1809.

    Article  CAS  Google Scholar 

  33. D. W. Urry, J. D. Glickson, D. F. Mayers and J. Haider, Spectroscopic Studies on the Conformation of Gramicidin A. Evidence for a New Helical Conformation, Biochemistry, 1972, 11, 487–493.

    Article  PubMed  CAS  Google Scholar 

  34. Y. Chen and B. A. Wallace, Binding of Alkaline Cations to the Double-Helical Form of Gramicidin, Biophys. J., 1996, 71, 163–170.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Y. Chen and B. A. Wallace, Solvent Effects on the Conformation and Far UV CD Spectra of Gramicidin, Biopolymers, 1997, 42, 771–781.

    Article  PubMed  CAS  Google Scholar 

  36. J. M. Beechem and L. Brand, Time-Resolved Fluorescence of Proteins, Annu. Rev. Biochem., 1985, 54, 43–71.

    Article  PubMed  CAS  Google Scholar 

  37. S. Weinstein, B. A. Wallace, J. S. Morrow and W. R. Veatch, Conformation of the Gramicidin A Transmembrane Channel: A 13C Nuclear Magnetic Resonance Study of 13C-enriched Gramicidin in Phosphatidylcholine Vesicles, J. Mol. Biol., 1980, 143, 1–19.

    Article  PubMed  CAS  Google Scholar 

  38. J. A. Killian and D. W. Urry, Conformation of Gramicidin in Relation to its Ability to Form Bilayers With Lysophosphatidylcholine, Biochemistry, 1988, 27, 7295–7301.

    Article  PubMed  CAS  Google Scholar 

  39. O. S. Andersen, L. L. Providence, R. E. Koeppe II, Gramicidin Channels Are Right-Handed Beta-Helical Dimers, Biophys. J., 1990, 57, A100–A100.

    Google Scholar 

  40. O. S. Andersen, G. Saberwal, D. V. Greathouse, R. E. Koeppe II, Gramicidin Channels - A Solvable Membrane “Protein” Folding Problem, Indian J. Biochem. Biophys., 1996, 33, 331–342.

    PubMed  CAS  Google Scholar 

  41. O. S. Andersen, C. Nielsen, A. M. Maer, J. A. Lundbaek, M. Goulian, R. E. Koeppe II, Gramicidin channels: Molecular force transducers in lipid bilayers, Biol. Skrif, 1998, 49, 75–82.

    CAS  Google Scholar 

  42. D. A. Kelkar and A. Chattopadhyay, Monitoring Ion Channel Conformations in Membranes Utilizing a Novel Dual Fluorescence Quenching Approach, Biochem. Biophys. Res. Commun., 2006, 343, 483–488.

    Article  PubMed  CAS  Google Scholar 

  43. A. V. Krylov, Y. N. Antonenko, A. A. Yaroslavov, T. I. Rokitskaya, E. A. Kotova, R. E. Koeppe II, D. V. Greathouse and O. S. Andersen, Polylysine Decelerates Channel Kinetics of Negatively Charged Gramicidin as Shown by Sensitized Photoinactivation, Biophys. J., 1998, 74, A387–A387.

    Google Scholar 

  44. M. A. Sánchez, A. M. Mainar, J. I. Pardo, M. C. López and J. S. Urieta, Solubility of Nonpolar Gases in 2,2,2-Trifluoroethanol and 1,1,1,3,3,3-Hexafluoropropan-2-ol at Several Temperatures and 101.33 kPa Partial Pressure of Gas, Can. J. Chem., 2001, 79, 1460–1465.

    Article  Google Scholar 

  45. R. Battino, T. R. Rettich and T. Tominaga, The Solubility of Oxygen and Ozone in Liquids, J. Phys. Chem. Ref. Data, 1983, 12, 163–178.

    Article  CAS  Google Scholar 

  46. R. W. Redmond and J. N. Gamlin, A Compilation of Singlet Oxygen Yields from Biologically Relevant Molecules, Photochem. Photobiol., 1999, 70, 391–475.

    Article  PubMed  CAS  Google Scholar 

  47. E. Lemp, C. Valencia and A. L. Zanocco, Solvent Effects on Reactions of Singlet Molecular Oxygen With Antimalarial Drugs, J. Photochem. Photobiol., A, 2004, 168, 91–96.

    Article  CAS  Google Scholar 

  48. N. J. Turro, Modern molecular photochemistry, University Science Books, USA, 1991.

    Google Scholar 

  49. S. Haldar, A. Chaudhuri, H. Gu, R. E. Koeppe II, M. Kombrabail, G. Krishnamoorthy and A. Chattopadhyay, Membrane Organization and Dynamics of ‘Inner Pair’ and ‘Outer Pair’ Tryptophan Residues in Gramicidin Channels, J. Phys. Chem. B, 2012, 116, 11056–11064.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. A. Chaudhuri, S. Haldar, H. Sun, R. E. Koeppe II and A. Chattopadhyay, Importance of Indole N-H Hydrogen Bonding In The Organization and Dynamics of Gramicidin Channels, Biochim. Biophys. Acta, 2014, 1838, 419–428.

    Article  PubMed  CAS  Google Scholar 

  51. H. Sun, D. V. Greathouse, O. S. Andersen, R. E. Koeppe II, The Preference of Tryptophan for Membrane Interfaces: Insights From N-Methylation Of Tryptophans In Gramicidin Channels, J. Biol. Chem., 2008, 283, 22233–22243.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. M. Montalti, A. Credi, L. Prodi and M. T. Gandolfi, Handbook of photochemistry, USA, 2006.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Denis Fuentealba or Marco A. Soto-Arriaza.

Additional information

Electronic supplementary information (ESI) available: 1H NMR, 13C NMR, absorption and emission spectra for 1-methyl Trp, MS analysis of Gr and MetGr, Gr photo-oxidation in TFE, and SDS-PAGE of MetGr. See DOI: 10.1039/c4pp00414k

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuentealba, D., López, J.J., Palominos, M. et al. Gramicidin conformational changes during riboflavin photosensitized oxidation in solution and the effect of N-methylation of tryptophan residues. Photochem Photobiol Sci 14, 748–756 (2015). https://doi.org/10.1039/c4pp00414k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c4pp00414k

Navigation