Skip to main content
Log in

Formation of cyclobutane pyrimidine dimers at dipyrimidines containing 5-hydroxymethylcytosine

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Much of the cancer-causing effects of ultraviolet radiation from the sun have been linked to the formation of dimerized DNA bases. These dimeric DNA photoproducts include the cyclobutane pyrimidine dimers (CPDs) and the pyrimidine(6-4)pyrimidone photoproducts [(6-4)PPs]. CPDs are highly mutagenic and are produced in substantial quantities by UVB radiation. These dimers can form between any two adjacent pyrimidines and can involve thymine, cytosine, or 5-methylcytosine. Very recently, a sixth DNA base, 5-hydroxymethylcytosine (5hmC) has been identified and characterized as a normal component of mammalian DNA. Here, we investigated the formation of CPDs at different DNA sequences containing 5hmC following irradiation with UVA, UVB, or UVC light sources. We show that the formation of CPDs at dipyrimidines containing 5hmC occurs at different DNA sequences but is not enhanced relative to cytosine or 5-methylcytosines at the same sequence positions. In fact, in some sequence contexts, CPDs containing 5hmC are formed at very low levels. Nonetheless, CPD formation at 5hmC pyrimidines is expected to be biologically relevant since three types of human skin-derived cells, fibroblasts, keratinocytes and melanocytes, all contain detectable levels of this modified base.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Cadet, T. Douki, Oxidatively generated damage to DNA by UVA radiation in cells and human skin, J. Invest. Dermatol., 2011, 131, 1005–1007.

    Article  CAS  PubMed  Google Scholar 

  2. T. Douki, A. Reynaud-Angelin, J. Cadet, E. Sage, Bipyrimidine photoproducts rather than oxidative lesions are the main type of DNA damage involved in the genotoxic effect of solar UVA radiation, Biochemistry, 2003, 42, 9221–9226.

    Article  CAS  PubMed  Google Scholar 

  3. G. P. Pfeifer, Y. H. You, A. Besaratinia, Mutations induced by ultraviolet light, Mutat. Res., 2005, 571, 19–31.

    Article  CAS  PubMed  Google Scholar 

  4. P. J. Rochette, J. P. Therrien, R. Drouin, D. Perdiz, N. Bastien, E. A. Drobetsky, E. Sage, UVA-induced cyclobutane pyrimidine dimers form predominantly at thymine-thymine dipyrimidines and correlate with the mutation spectrum in rodent cells, Nucleic Acids Res., 2003, 31, 2786–2794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. N. Bastien, J. F. Millau, M. Rouabhia, R. J. Davies, R. Drouin, The sunscreen agent 2-phenylbenzimidazole-5-sulfonic acid photosensitizes the formation of oxidized guanines in cellulo after UV-A or UV-B exposure, J. Invest. Dermatol., 2010, 130, 2463–2471.

    Article  CAS  PubMed  Google Scholar 

  6. D. L. Mitchell, A. A. Fernandez, Different types of DNA damage play different roles in the etiology of sunlight-induced melanoma, Pigm. Cell Melanoma Res., 2011, 24, 119–124.

    Article  CAS  Google Scholar 

  7. Y. H. You, D. H. Lee, J. H. Yoon, S. Nakajima, A. Yasui, G. P. Pfeifer, Cyclobutane pyrimidine dimers are responsible for the vast majority of mutations induced by UVB irradiation in mammalian cells, J. Biol. Chem., 2001, 276, 44688–44694.

    Article  CAS  PubMed  Google Scholar 

  8. D. L. Mitchell, R. S. Nairn, The biology of the (6-4) photoproduct, Photochem. Photobiol., 1989, 49, 805–819.

    Article  CAS  PubMed  Google Scholar 

  9. D. H. Lee, G. P. Pfeifer, Deamination of 5-methylcytosines within cyclobutane pyrimidine dimers is an important component of UVB mutagenesis, J. Biol. Chem., 2003, 278, 10314–10321.

    Article  CAS  PubMed  Google Scholar 

  10. J. H. Choi, G. P. Pfeifer, The role of DNA polymerase eta in UV mutational spectra, DNA Repair, 2005, 4, 211–220.

    Article  CAS  PubMed  Google Scholar 

  11. N. Jiang, J.-S. Taylor, In vivo evidence that UV-induced C-T mutations at dipyrimidine sites could result from the replicative bypass of cis-syn cyclobutane dimers or their deamination products, Biochemistry, 1993, 32, 472–481.

    Article  CAS  PubMed  Google Scholar 

  12. B. Vu, V. J. Cannistraro, L. Sun, J. S. Taylor, DNA synthesis past a 5-methylC-containing cis-syn-cyclobutane pyrimidine dimer by yeast pol eta is highly nonmutagenic, Biochemistry, 2006, 45, 9327–9335.

    Article  CAS  PubMed  Google Scholar 

  13. E. Sage, B. Lamolet, E. Brulay, E. Moustacchi, A. Chteauneuf, E. A. Drobetsky, Mutagenic specificity of solar UV light in nucleotide excision repair-deficient rodent cells, Proc. Natl. Acad. Sci. U. S. A., 1996, 93, 176–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Y.-H. You, C. Li, G. P. Pfeifer, Involvement of 5-methylcytosine in sunlight-induced mutagenesis, J. Mol. Biol., 1999, 293, 493–503.

    Article  CAS  PubMed  Google Scholar 

  15. D. E. Brash, J. A. Rudolph, J. A. Simon, A. Lin, G. J. McKenna, H. P. Baden, A. J. Halperin, J. Pontén, A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma, Proc. Natl. Acad. Sci. U. S. A., 1991, 88, 10124–10128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. N. Dumaz, C. Drougard, A. Sarasin, L. Daya-Grosjean, Specific UV-induced mutation spectrum in the p53 gene of skin tumors from DNA-repair-deficient xeroderma pigmentosum patients, Proc. Natl. Acad. Sci. U. S. A., 1993, 90, 10529–10533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. G. P. Pfeifer, Environmental exposures and mutational patterns of cancer genomes, Genome Med., 2010, 2, 54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. E. Hodis, I. R. Watson, G. V. Kryukov, S. T. Arold, M. Imielinski, J. P. Theurillat, E. Nickerson, D. Auclair, L. Li, C. Place, D. Dicara, A. H. Ramos, M. S. Lawrence, K. Cibulskis, A. Sivachenko, D. Voet, G. Saksena, N. Stransky, R. C. Onofrio, W. Winckler, K. Ardlie, N. Wagle, J. Wargo, K. Chong, D. L. Morton, K. Stemke-Hale, G. Chen, M. Noble, M. Meyerson, J. E. Ladbury, M. A. Davies, J. E. Gershenwald, S. N. Wagner, D. S. Hoon, D. Schadendorf, E. S. Lander, S. B. Gabriel, G. Getz, L. A. Garraway, L. Chin, A landscape of driver mutations in melanoma, Cell, 2012, 150, 251–263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. S. Tommasi, M. F. Denissenko, G. P. Pfeifer, Sunlight induces pyrimidine dimers preferentially at 5-methylcytosine bases, Cancer Res., 1997, 57, 4727–4730.

    CAS  PubMed  Google Scholar 

  20. R. Drouin, J. P. Therrien, UVB-induced cyclobutane pyrimidine dimer frequency correlates with skin cancer mutational hotspots in p53, Photochem. Photobiol., 1997, 66, 719–726.

    Article  CAS  PubMed  Google Scholar 

  21. G. R. Wyatt, S. S. Cohen, The bases of the nucleic acids of some bacterial and animal viruses: the occurrence of 5-hydroxymethylcytosine, Biochem. J., 1953, 55, 774–782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. S. Kriaucionis, N. Heintz, The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain, Science, 2009, 324, 929–930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. M. Tahiliani, K. P. Koh, Y. Shen, W. A. Pastor, H. Bandukwala, Y. Brudno, S. Agarwal, L. M. Iyer, D. R. Liu, L. Aravind, A. Rao, Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1, Science, 2009, 324, 930–935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. S. Ito, A. C. D’Alessio, O. V. Taranova, K. Hong, L. C. Sowers, Y. Zhang, Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification, Nature, 2010, 466, 1129–1133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. K. Iqbal, S. G. Jin, G. P. Pfeifer, P. E. Szabo, Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine, Proc. Natl. Acad. Sci. U. S. A., 2011, 108, 3642–3647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. S. G. Jin, X. Wu, A. X. Li, G. P. Pfeifer, Genomic mapping of 5-hydroxymethylcytosine in the human brain, Nucleic Acids Res., 2011, 39, 5015–5024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. A. Szwagierczak, S. Bultmann, C. S. Schmidt, F. Spada, H. Leonhardt, Sensitive enzymatic quantification of 5-hydroxymethylcytosine in genomic DNA, Nucleic Acids Res., 2010, 38, e181.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. J. D. Childs, M. C. Paterson, B. P. Smith, N. E. Gentner, Evidence for a near UV-induced photoproduct of 5-hydroxymethylcytosine in bacteriophage T4 that can be recognized by endonuclease V, Mol. Gen. Genet., 1978, 167, 105–112.

    Article  CAS  PubMed  Google Scholar 

  29. J. D. Childs, M. J. Ellison, R. Pilon, Formation of 5-hydroxymethylcytosine-containing pyrimidine dimers in UV-irradiated bacteriophage T4 DNA, Photochem. Photobiol., 1983, 37, 513–519.

    Article  CAS  PubMed  Google Scholar 

  30. R. Meneghini, P. Hanawalt, T4-endonuclease V-sensitive sites in DNA from ultraviolet-irradiated human cells, Biochim. Biophys. Acta, 1976, 425, 428–437.

    Article  CAS  PubMed  Google Scholar 

  31. S. G. Jin, S. Kadam, G. P. Pfeifer, Examination of the specificity of DNA methylation profiling techniques towards 5-methylcytosine and 5-hydroxymethylcytosine, Nucleic Acids Res., 2010, 38, e125.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. S. G. Jin, Y. Jiang, R. Qiu, T. A. Rauch, Y. Wang, G. Schackert, D. Krex, Q. Lu, G. P. Pfeifer, 5-Hydroxymethylcytosine is strongly depleted in human cancers but its levels do not correlate with IDH1 mutations, Cancer Res., 2011, 71, 7360–7365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Q. Song, V. J. Cannistraro, J. S. Taylor, Rotational position of a 5-methylcytosine-containing cyclobutane pyrimidine dimer in a nucleosome greatly affects its deamination rate, J. Biol. Chem., 2011, 286, 6329–6335.

    Article  CAS  PubMed  Google Scholar 

  34. Y. Tu, R. Dammann, G. P. Pfeifer, Sequence and time-dependent deamination of cytosine bases in UVB-induced cyclobutane pyrimidine dimers in vivo, J. Mol. Biol., 1998, 284, 297–311.

    Article  CAS  PubMed  Google Scholar 

  35. L. Celewicz, M. Mayer, M. D. Shetlar, The photochemistry of thymidylyl-(3’-5’)-5-methyl-2’-deoxycytidine in aqueous solution, Photochem. Photobiol., 2005, 81, 404–418.

    Article  CAS  PubMed  Google Scholar 

  36. C. Frauer, T. Hoffmann, S. Bultmann, V. Casa, M. C. Cardoso, I. Antes, H. Leonhardt, Recognition of 5-hydroxymethylcytosine by the Uhrf1 SRA domain, PLoS One, 2011, 6, e21306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. O. Yildirim, R. Li, J. H. Hung, P. B. Chen, X. Dong, L. S. Ee, Z. Weng, O. J. Rando, T. G. Fazzio, Mbd3/NURD complex regulates expression of 5-hydroxymethylcytosine marked genes in embryonic stem cells, Cell, 2011, 147, 1498–1510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. M. Mellen, P. Ayata, S. Dewell, S. Kriaucionis, N. Heintz, MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system, Cell, 2012, 151, 1417–1430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. C. G. Spruijt, F. Gnerlich, A. H. Smits, T. Pfaffeneder, P. W. Jansen, C. Bauer, M. Munzel, M. Wagner, M. Muller, F. Khan, H. C. Eberl, A. Mensinga, A. B. Brinkman, K. Lephikov, U. Muller, J. Walter, R. Boelens, H. van Ingen, H. Leonhardt, T. Carell, M. Vermeulen, Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives, Cell, 2013, 152, 1146–1159.

    Article  CAS  PubMed  Google Scholar 

  40. G. P. Pfeifer, R. Drouin, A. D. Riggs, G. P. Holmquist, Binding of transcription factors creates hot spots for UV photoproducts in vivo, Mol. Cell. Biol., 1992, 12, 1798–1804.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. S. Tornaletti, G. P. Pfeifer, UV light as a footprinting agent: modulation of UV-induced DNA damage by transcription factors bound at the promoters of three human genes, J. Mol. Biol., 1995b, 249, 714–728.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd P. Pfeifer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Si., Jin, SG. & Pfeifer, G.P. Formation of cyclobutane pyrimidine dimers at dipyrimidines containing 5-hydroxymethylcytosine. Photochem Photobiol Sci 12, 1409–1415 (2013). https://doi.org/10.1039/c3pp50037c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c3pp50037c

Navigation