Skip to main content

Advertisement

Log in

Dirty hands: photodynamic killing of human pathogens like EHEC, MRSA and Candida within seconds

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Hand hygiene is one of the most important interventions for reducing transmission of nosocomial life-threatening microorganisms, like methicillin resistant Staphylococcus aureus (MRSA), enterohemorrhagic Escherichia coli (EHEC) or Candida albicans. All three pathogens have become a leading cause of infections in hospitals. Especially EHEC is causing severe diarrhoea and, in a small percentage of cases, haemolytic-uremic syndrome (HUS) as reported for E. coli 104:H4 in Germany 2011. We revealed the possibility to inactivate very fast and efficiently MRSA, EHEC and C. albicans using the photodynamic approach. MRSA, EHEC and C. albicans were incubated in vitro with different concentrations of TMPyP for 10 s and illuminated with visible light (50 mW cm−2) for 10 and 60 s. 1 μmol l−1 of TMPyP and an applied radiant exposure of 0.5 J cm−2 achieved a photodynamic killing of ≥99.9% of MRSA and EHEC. Incubation with higher concentrations (up to 100 μmol l−1) of TMPyP caused bacteria killing of >5 log10 (≥99.999%) after illumination. Efficient Candida killing (≥99.999%) was achieved first at a higher light dose of 12 J cm−2. Different rise and decay times of singlet oxygen luminescence signals could be detected in Candida cell suspensions for the first time, indicating different oxygen concentrations in the surrounding for the photosensitizer and singlet oxygen, respectively. This confirms that TMPyP is not only found in the water-dominated cell surrounding, but also within the C. albicans cells. Applying a water-ethanol solution of TMPyP on ex vivo porcine skin, fluorescence microscopy of histology showed that the photosensitizer was exclusively localized in the stratum corneum regardless of the incubation time. TMPyP exhibited a fast and very effective killing rate of life-threatening pathogens within a couple of seconds that encourages further testing in an in vivo setting. Being fast and effective, antimicrobial photodynamic applications might become acceptable as a tool for hand hygiene procedures and also in other skin areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Kluytmans, A. van Belkum, and H. Verbrugh, Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks, Clin. Microbiol. Rev., 1997, 10, 505–520.

    Article  CAS  Google Scholar 

  2. R. Kock, A. Mellmann, F. Schaumburg, A. W. Friedrich, F. Kipp, and K. Becker, The epidemiology of methicillin-resistant Staphylococcus aureus (MRSA) in Germany, Dtsch. Arztebl. Int., 2011, 108, 761–767.

    Google Scholar 

  3. Y. H. Samaranayake, B. P. Cheung, N. Parahitiyawa, C. J. Seneviratne, J. Y. Yau, K. W. Yeung, and L. P. Samaranayake, Synergistic activity of lysozyme and antifungal agents against Candida albicans biofilms on denture acrylic surfaces, Arch. Oral Biol., 2009, 54, 115–126.

    Article  CAS  Google Scholar 

  4. D. M. Arana, C. Nombela, and J. Pla, Fluconazole at subinhibitory concentrations induces the oxidative- and nitrosative-responsive genes TRR1, GRE2 and YHB1, and enhances the resistance of Candida albicans to phagocytes, J. Antimicrob. Chemother., 2010, 65, 54–62.

    Article  CAS  Google Scholar 

  5. S. Mathur, and R. Singh, Antibiotic resistance in food lactic acid bacteria–a review, Int. J. Food Microbiol., 2005, 105, 281–295.

    Article  CAS  Google Scholar 

  6. J. R. Bower, Foodborne diseases: Shiga toxin producing E. coli (STEC), Pediatr. Infect Dis. J., 1999, 18, 909–910.

    Article  CAS  Google Scholar 

  7. P. C. Appelbaum, The emergence of vancomycin-intermediate and vancomycin-resistant Staphylococcus aureus, Clin. Microbiol. Infect., 2006, 12 Suppl 1, 16–23.

    Article  CAS  Google Scholar 

  8. J. Y. Ang, E. Ezike, and B. I. Asmar, Antibacterial resistance, Indian J. Pediatr., 2004, 71, 229–239.

    Article  Google Scholar 

  9. R. M. Chapple, B. Inglis, and P. R. Stewart, Lethal and mutational effects of solar and UV radiation on Staphylococcus aureus, Arch. Microbiol., 1992, 157, 242–248.

    Article  CAS  Google Scholar 

  10. W. M. Snellings, C. S. Weil, and R. R. Maronpot, A two-year inhalation study of the carcinogenic potential of ethylene oxide in Fischer 344 rats, Toxicol. Appl. Pharmacol., 1984, 75, 105–117.

    Article  CAS  Google Scholar 

  11. J. A. Imlay, S. M. Chin, and S. Linn, Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivoin vitro, Science, 1988, 240, 640–642.

    Article  CAS  Google Scholar 

  12. B. V. Krishna, and A. P. Gibb, Use of octenidine dihydrochloride in methicillin-resistant Staphylococcus aureus decolonisation regimens: a literature review, J. Hosp. Infect., 2010, 74, 199–203.

    Article  CAS  Google Scholar 

  13. G. Judah, P. Donachie, E. Cobb, W. Schmidt, M. Holland, and V. Curtis, Dirty hands: bacteria of faecal origin on commuters’ hands, Epidemiol. Infect., 2010, 138, 409–414.

    Article  CAS  Google Scholar 

  14. F. Gad, T. Zahra, K. P. Francis, T. Hasan, and M. R. Hamblin, Targeted photodynamic therapy of established soft-tissue infections in mice, Photochem. Photobiol. Sci., 2004, 3, 451–458.

    Article  CAS  Google Scholar 

  15. N. Komerik, H. Nakanishi, A. J. MacRobert, B. Henderson, P. Speight, and M. Wilson, In vivo killing of Porphyromonas gingivalis by toluidine blue-mediated photosensitization in an animal model, Antimicrob Agents Chemother., 2003, 47, 932–940.

    Article  CAS  Google Scholar 

  16. T. Maisch, J. Wagner, V. Papastamou, H. J. Nerl, K. A. Hiller, R. M. Szeimies, and G. Schmalz, Combination of 10% EDTA, Photosan, and a blue light hand-held photopolymerizer to inactivate leading oral bacteria in dentistry in vitro, J. Appl. Microbiol., 2009, 107, 1569–1578.

    Article  CAS  Google Scholar 

  17. A. S. Garcez, S. C. Nunez, M. R. Hamblin, and M. S. Ribeiro, Antimicrobial effects of photodynamic therapy on patients with necrotic pulps and periapical lesion, J. Endod., 2008, 34, 138–142.

    Article  Google Scholar 

  18. A. S. Garcez, S. C. Nunez, J. L. Lage-Marques, M. R. Hamblin, and M. S. Ribeiro, Photonic real-time monitoring of bacterial reduction in root canals by genetically engineered bacteria after chemomechanical endodontic therapy, Braz Dent. J., 2007, 18, 202–207.

    Article  Google Scholar 

  19. X. Ragas, T. Dai, G. P. Tegos, M. Agut, S. Nonell, and M. R. Hamblin, Photodynamic inactivation of Acinetobacter baumannii using phenothiazinium dyes: in vitroin vivo studies, Lasers Surg. Med., 2011, 42, 384–390.

    Article  Google Scholar 

  20. Y. Nitzan, R. Dror, H. Ladan, Z. Malik, S. Kimel, and V. Gottfried, Structure–activity relationship of porphines for photoinactivation of bacteria, Photochem. Photobiol., 1995, 62, 342–347.

    Article  CAS  Google Scholar 

  21. E. Alves, L. Costa, C. M. Carvalho, J. P. Tome, M. A. Faustino, M. G. Neves, A. C. Tome, J. A. Cavaleiro, A. Cunha, and A. Almeida, Charge effect on the photoinactivation of Gram-negative and Gram-positive bacteria by cationic meso-substituted porphyrins, BMC Microbiol., 2009, 9, 70.

    Article  Google Scholar 

  22. T. Maisch, J. Baier, B. Franz, M. Maier, M. Landthaler, R. M. Szeimies, and W. Baumler, The role of singlet oxygen and oxygen concentration in photodynamic inactivation of bacteria, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 7223–7228.

    Article  CAS  Google Scholar 

  23. M. Merchat, G. Bertolini, P. Giacomini, A. Villanueva, and G. Jori, Meso-substituted cationic porphyrins as efficient photosensitizers of gram-positive and gram-negative bacteria, J. Photochem. Photobiol., B., 1996, 32, 153–157.

    Article  CAS  Google Scholar 

  24. M. Salmon-Divon, Y. Nitzan, and Z. Malik, Mechanistic aspects of Escherichia coli photodynamic inactivation by cationic tetra-meso(N-methylpyridyl)porphine, Photochem. Photobiol. Sci., 2004, 3, 423–429.

    Article  CAS  Google Scholar 

  25. L. Brancaleon, and H. Moseley, Laser and non-laser light sources for photodynamic therapy, Lasers Med. Sci., 2002, 17, 173–186.

    Article  CAS  Google Scholar 

  26. J. Regensburger, T. Maisch, A. Felgentrager, F. Santarelli, and W. Baumler, A helpful technology–the luminescence detection of singlet oxygen to investigate photodynamic inactivation of bacteria (PDIB), J. Biophotonics., 2010, 3, 319–327.

    Article  CAS  Google Scholar 

  27. J. Baier, T. Fuß, C. Pöllmann, C. Wiesmann, K. Pindl, R. Engl, D. Baumer, M. Maier, M. Landthaler, W. Bäumler, Theoretical and experimental analysis of the luminescence signal of singlet oxygen for different photosensitizers, J. Photochem. Photobiol. B: Biol., 2007, 87, 163–173.

    Article  CAS  Google Scholar 

  28. A. A. Miles, S. S. Misra, and J. O. Irwin, The estimation of the bactericidal power of the blood, J. Hyg. (Lond)., 1938, 38, 732–749.

    CAS  Google Scholar 

  29. T. Mosmann, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays, J. Immunol. Methods., 1983, 65, 55–63.

    Article  CAS  Google Scholar 

  30. J. M. Boyce, and D. Pittet, Guideline for Hand Hygiene in Health-Care Settings. Recommendations of the Healthcare Infection Control Practices Advisory Committee and the HIPAC/SHEA/APIC/IDSA Hand Hygiene Task Force, Am. J. Infect. Control., 2002, 30, S1–S46.

    Article  Google Scholar 

  31. S. B. al-Masaudi, M. J. Day, and A. D. Russell, Antimicrobial resistance and gene transfer in Staphylococcus aureus, J. Appl. Bacteriol., 1991, 70, 279–290.

    Article  CAS  Google Scholar 

  32. F. Baquero, J. F. Barrett, P. Courvalin, I. Morrissey, L. Piddock, and W. J. Novick, Epidemiology and mechanisms of resistance among respiratory tract pathogens, Clin. Microbiol. Infect., 1998, 4 Suppl 2, S19–S26.

    Google Scholar 

  33. L. Birosova, and M. Mikulasova, Development of triclosan and antibiotic resistance in Salmonella enterica serovar Typhimurium, J. Med. Microbiol., 2009, 58, 436–441.

    Article  CAS  Google Scholar 

  34. K. Komagoe, H. Kato, T. Inoue, and T. Katsu, Continuous real-time monitoring of cationic porphyrin-induced photodynamic inactivation of bacterial membrane functions using electrochemical sensors, Photochem. Photobiol. Sci., 2011, 10, 1181–1188.

    Article  CAS  Google Scholar 

  35. T. Maisch, C. Bosl, R. M. Szeimies, N. Lehn, and C. Abels, Photodynamic effects of novel XF porphyrin derivatives on prokaryotic and eukaryotic cells, Antimicrob. Agents Chemother., 2005, 49, 1542–1552.

    Article  CAS  Google Scholar 

  36. T. Breitenbach, M. K. Kuimova, P. Gbur, S. Hatz, N. B. Schack, B. W. Pedersen, J. D. Lambert, L. Poulsen, and P. R. Ogilby, Photosensitized production of singlet oxygen: spatially-resolved optical studies in single cells, Photochem. Photobiol. Sci., 2009, 8, 442–452.

    Article  CAS  Google Scholar 

  37. R. F. Pfeltz, V. K. Singh, J. L. Schmidt, M. A. Batten, C. S. Baranyk, M. J. Nadakavukaren, R. K. Jayaswal, and B. J. Wilkinson, Characterization of passage-selected vancomycin-resistant Staphylococcus aureus strains of diverse parental backgrounds, Antimicrob. Agents Chemother., 2000, 44, 294–303.

    Article  CAS  Google Scholar 

  38. V. Gottfried, D. Peled, J. W. Winkelman, and S. Kimel, Photosensitizers in organized media: singlet oxygen production and spectral properties, Photochem. Photobiol., 1988, 48, 157–163.

    Article  CAS  Google Scholar 

  39. Y. Usui, Determination of quantum yield of Singlet Oxygen Formation by Photosensitization, Chem. Lett., 1973, 7, 743–744.

    Article  Google Scholar 

  40. R. Pottier, A. Lachaine, M. Pierre, and J. C. Kennedy, A new electronic absorbance band in concentrated aqueous solutions of hematoporphyrin IX detected by photoacoustic spectroscopy, Photochem. Photobiol., 1988, 47, 669–674.

    Article  CAS  Google Scholar 

  41. I. J. Davis, H. Richards, and P. Mullany, Isolation of silver- and antibiotic-resistant Enterobacter cloacae from teeth, Oral Microbiol. Immunol., 2005, 20, 191–194.

    Article  CAS  Google Scholar 

  42. J. T. Trevors, Copper resistance in bacteria, Microbiol. Sci., 1987, 4, 29–31.

    CAS  Google Scholar 

  43. S. Silver, Bacterial resistances to toxic metal ions–a review, Gene, 1996, 179, 9–19.

    Article  CAS  Google Scholar 

  44. M. M. Huycke, D. F. Sahm, and M. S. Gilmore, Multiple-drug resistant enterococci: the nature of the problem and an agenda for the future, Emerg. Infect. Dis., 1998, 4, 239–249.

    Article  CAS  Google Scholar 

  45. M. Grinholc, B. Szramka, K. Olender, and A. Graczyk, Bactericidal effect of photodynamic therapy against methicillin-resistant Staphylococcus aureus strain with the use of various porphyrin photosensitizers, Acta Biochim. Pol., 2007, 54, 665–670.

    Article  CAS  Google Scholar 

  46. M. Grinholc, B. Szramka, J. Kurlenda, A. Graczyk, and K. P. Bielawski, Bactericidal effect of photodynamic inactivation against methicillin-resistant and methicillin-susceptible Staphylococcus aureus is strain-dependent, J. Photochem. Photobiol., B, 2008, 90, 57–63.

    Article  CAS  Google Scholar 

  47. M. Grinholc, M. Richter, J. Nakonieczna, G. Fila, and K. P. Bielawski, The connection between agr and SCCmec elements of Staphylococcus aureus strains and their response to photodynamic inactivation, Photomed. Laser Surg., 2011, 29, 413–419.

    Article  CAS  Google Scholar 

  48. G. Jori, C. Fabris, M. Soncin, S. Ferro, O. Coppellotti, D. Dei, L. Fantetti, G. Chiti, and G. Roncucci, Photodynamic therapy in the treatment of microbial infections: basic principles and perspective applications, Lasers Surg. Med., 2006, 38, 468–481.

    Article  Google Scholar 

  49. S. Viazis, M. Akhtar, J. Feirtag, F. Diez-Gonzalez, Reduction of Escherichia coli O157:H7 viability on hard surfaces by treatment with a bacteriophage mixture, Int. J. Food Microbiol., 2011, 145, 37–42.

    Article  Google Scholar 

  50. D. Goode, V. M. Allen, and P. A. Barrow, Reduction of experimental Salmonella and Campylobacter contamination of chicken skin by application of lytic bacteriophages, Appl. Environ. Microbiol., 2003, 69, 5032–5036.

    Article  CAS  Google Scholar 

  51. M. Cislo, M. Dabrowski, B. Weber-Dabrowska, and A. Woyton, Bacteriophage treatment of suppurative skin infections, Arch. Immunol. Ther. Exp. (Warsz), 1987, 35, 175–183.

    CAS  Google Scholar 

  52. S. Guenther, D. Huwyler, S. Richard, and M. J. Loessner, Virulent bacteriophage for efficient biocontrol of Listeria monocytogenes in ready-to-eat foods, Appl. Environ. Microbiol., 2009, 75, 93–100.

    Article  CAS  Google Scholar 

  53. R. Modi, Y. Hirvi, A. Hill, and M. W. Griffiths, Effect of phage on survival of Salmonella enteritidis during manufacture and storage of cheddar cheese made from raw and pasteurized milk, J. Food Prot., 2001, 64, 927–933.

    Article  CAS  Google Scholar 

  54. B. Leverentz, W. S. Conway, Z. Alavidze, W. J. Janisiewicz, Y. Fuchs, M. J. Camp, E. Chighladze, and A. Sulakvelidze, Examination of bacteriophage as a biocontrol method for salmonella on fresh-cut fruit: a model study, J. Food Prot., 2001, 64, 1116–1121.

    Article  CAS  Google Scholar 

  55. J. P. Nataro, C. A. Bopp, P. I. Fields, J. B. Kaper, and N. A. Strockbine, Escherichia, Shigella, and Salmonella, ASM Press, Washington, DC, USA, 9th edn., 2007.

    Google Scholar 

  56. F. Gad, T. Zahra, T. Hasan, and M. R. Hamblin, Effects of growth phase and extracellular slime on photodynamic inactivation of gram-positive pathogenic bacteria, Antimicrob. Agents Chemother., 2004, 48, 2173–2178.

    Article  CAS  Google Scholar 

  57. T. N. Demidova, and M. R. Hamblin, Effect of cell-photosensitizer binding and cell density on microbial photoinactivation, Antimicrob. Agents Chemother., 2005, 49, 2329–2335.

    Article  CAS  Google Scholar 

  58. B. Zeina, J. Greenman, W. M. Purcell, and B. Das, Killing of cutaneous microbial species by photodynamic therapy, Br. J. Dermatol., 2001, 144, 274–278.

    Article  CAS  Google Scholar 

  59. W. Meyer, R. Schwarz, and K. Neurand, The skin of domestic mammals as a model for the human skin, with special reference to the domestic pig, Curr. Probl. Dermatol., 1978, 7, 39–52.

    Article  CAS  Google Scholar 

  60. G. A. Simon, and H. I. Maibach, The pig as an experimental animal model of percutaneous permeation in man: qualitative and quantitative observations–an overview, Skin Pharmacol. Appl. Skin Physiol., 2000, 13, 229–234.

    Article  CAS  Google Scholar 

  61. M. Whitby, M. L. McLaws, and M. W. Ross, Why healthcare workers don‘t wash their hands: a behavioral explanation, Infect Control Hosp. Epidemiol., 2006, 27, 484–492.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Maisch.

Additional information

This article is published as part of a themed issue on current topics in photodermatology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eichner, A., Gonzales, F.P., Felgenträger, A. et al. Dirty hands: photodynamic killing of human pathogens like EHEC, MRSA and Candida within seconds. Photochem Photobiol Sci 12, 135–147 (2013). https://doi.org/10.1039/c2pp25164g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c2pp25164g

Navigation