Skip to main content
Log in

Cyclophane size drives the photochemical behaviour of benzophenone

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A new series of all-heterahomocalixarene-type structures was prepared. The new hetera[2n]metacyclophanes obtained contain a benzophenone moiety as photoactive component. Although both forms possess identical building blocks and differ only in ring size, they are markedly different in photochemical reactivity. The cyclophane size is the driving force for the photochemical behaviour of the benzophenone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. Encyclopedia of Supramolecular Chemistry, ed. J. L. Atwood and J. W. Steed, Marcel Dekker, New York, 2004.

    Google Scholar 

  2. Modern Cyclophane Chemistry, ed. R. Gleiter and H. Hopf, Wiley-VCH, Weinheim, 2004.

    Google Scholar 

  3. B. Koning, Carbon rich cyclophanes with unusual properties–an update, Top. Curr. Chem. 1998, 196, 91–136.

    Article  Google Scholar 

  4. C. Seel and F. Vögtle, Molecules with large cavities in supramolecular chemistry, Angew. Chem., Int. Ed. Engl. 1992, 31, 528–549.

    Article  Google Scholar 

  5. Calixarenes Revisited, ed. C. D. Gutsche, Royal Society of Chemistry, Cambridge, 1998.

    Google Scholar 

  6. P. A. Gale, P. Anzenbacher and J. L. Sessler, Calixpyrroles II, Coord. Chem. Rev. 2001, 222, 57.

    Article  CAS  Google Scholar 

  7. S. Kumar, D. Paul and H. Singh, Syntheses, structures and interactions of heterocalixarenes, Adv. Heterocycl. Chem. 2005, 89, 65–124.

    Article  CAS  Google Scholar 

  8. B. Koning and M. H. Fonseca, Heteroatom-bridged calixarenes, Eur. J. Inorg. Chem. 2000, 2000, 2303–2310.

    Article  Google Scholar 

  9. W. Maes and W. Dehaen, Oxacalix[ n](het)arenes, Chem. Soc. Rev. 2008, 37, 2393–2402.

    Article  CAS  Google Scholar 

  10. M.-X. Wang, Heterocalixaromatics, new generation macrocyclic host molecules in supramolecular chemistry, Chem. Commun. 2008 4541–4551.

    Google Scholar 

  11. M.-X. Wang, Nitrogen and oxygen bridged calixaromatics: synthesis, structure, functionalization, and molecular recognition, Acc. Chem. Res. 2012, 45, 182–195.

    Article  CAS  Google Scholar 

  12. S. Ibach, V. Prautzsch, F. Vögtle, C. Chartroux and K. Gloe, Homocalixarenes, Acc. Chem. Res. 1999, 32, 729–740.

    Article  CAS  Google Scholar 

  13. Y. Chen, D.-X. Wang, Z.-T. Huang and M.-X. Wang, Synthesis, structure and functionalization of homoheterocalix[2]arene[2] triazines: Versatile conformation and cavity structures regulated by the bridging elements, J. Org. Chem. 2010, 75, 3786–3796.

    Article  CAS  Google Scholar 

  14. Molecular and Supramolecular Photochemistry, ed. V. Ramamurthy and K. S. Schanze, Optical Sensors and Switches, Marcel Decker Inc., New York, 2001, vol.7,.

  15. L. F. Vieira Ferreira, I. Ferreira Machado, J. P. Da Silva and T. J. F. Branco, Surface photochemistry: benzophenone as a probe for the study of silica and reversed-phase silica surfaces, Photochem. Photobiol. Sci. 2006, 5, 665–673.

    Article  CAS  Google Scholar 

  16. L. F. Vieira Ferreira, M. R. Vieira Ferreira, J. P. Da Silva, I. Ferreira Machado, A. S. Oliveira and J. V. Prata, Novel laser-induced luminescence from benzophenone/ o-propylated p-tert-butylcalix[4] arene complexes. A diffuse reflectance study, Photochem. Photobiol. Sci. 2003, 2, 1002–1010.

    Article  Google Scholar 

  17. N. J. Turro, I. R. Gould, J. Liu, W. S. Jenks, H. Staab and R. Alt, Investigations of the influence of molecular geometry on the spectroscopic and photochemical properties of a-Oxo[1. n] paracyclophanes (cyclophanobenzophenones), J. Am. Chem. Soc. 1989, 111, 6378–6383.

    Article  CAS  Google Scholar 

  18. CRC Handbook of Organic Photochemistry and Photobiology, ed. W. M. Horspool and P.-S. Song, CRC Press, Boca Raton, FL, 1995.

    Google Scholar 

  19. IUPAC, Commission on Nomenclature of Organic Chemistry, Phane nomenclature. Part I: Phane parent names, Pure Appl. Chem., 1998, 70, 1513–1545.

    Article  Google Scholar 

  20. IUPAC, Commission on Nomenclature of Organic Chemistry, Phane nomenclature. Part II: Modification of the degree of hydrogenation and substitution derivatives of phane parent hydrides, Pure Appl. Chem. 2002, 74, 809–834.

    Article  Google Scholar 

  21. K. K. Park, H. Seo, J.-G. Kim and I.-H. Suh, Synthesis and structure of new cyclophanes containing benzofuran and benzene rings, Tetrahedron Lett. 2000, 41, 1393–1396.

    Article  CAS  Google Scholar 

  22. K. K. Park, I. K. Han and J. W. Park, Photochemical synthesis of cyclophanes containing tethered benzofuran rings, J. Org. Chem. 2001, 66, 6800–6802.

    Article  CAS  Google Scholar 

  23. More information in ESI

  24. P. J. Wagner, 1,5-Birradicals and five-membered rings generated by d-hydrogen abstraction in photoexcited ketones, Acc. Chem. Res. 1989, 22, 83.

    Article  CAS  Google Scholar 

  25. M. Abdul-Aziz, J. V. Auping and M. A. Meador,: Synthesis of substituted 2,3,5,6-tetraarylbenzo[1,2- b:5,4- b’]difurans, J. Org. Chem. 1995, 60, 1303.

    Article  CAS  Google Scholar 

  26. K. K. Park, H. Lim, S.-H. Kim and D.-H. Bae, Synthesis of novel cyclophanes containing benzo[1,2- b:5,4- b’]difuran and naphthalene rings, J. Chem. Soc., Perkin Trans. 1 2002 1393–1396.

    Google Scholar 

  27. P. Wagner, B.-S. Park, in Organic Photochemistry, ed. A. Pawda, Dekker, New York, 1991, vol.11, p.227.

    CAS  Google Scholar 

  28. G. Cainelli, G. Cardillo, M. Orena and S. Sandri, Polymer supported reagents. Chromic acid on anion exchange resisns. A simple and practical oxidation of alcohols to aldehydes and ketones, J. Am. Chem. Soc. 1976, 98, 6737–6738.

    Article  CAS  Google Scholar 

  29. P. J. Wagner, M. A. Meador and J. C. Scaiano, Photocyclizations of o-(benzyloxy)acetophenone and benzophenone: effects of variable rotational freedom on biradical behaviour, J. Am. Chem. Soc. 1984, 106, 7988–7989.

    Article  CAS  Google Scholar 

  30. P. J. Wagner, B. Zhou, T. Hasegawa and D. Ward, Diverse photochemistry of sterically congested a-arylacetophenones: ground-state conformational control of reactivity, J. Am. Chem. Soc. 1991, 113, 9640–9654.

    Article  CAS  Google Scholar 

  31. P. J. Wagner, M. A. Meador and B.-S. Park, The photocyclization of o-alkoxy phenyl ketones, J. Am. Chem. Soc. 1990, 112, 5199–5211.

    Article  CAS  Google Scholar 

  32. T. E. Lehmann, G. Müller and A. Berkessel, Photochemistry of 4’-benzophenone-substituted nucleoside derivatives as models for ribonucleotide reductases: competing generation of 3’-radicals and photoenols, J. Org. Chem. 2000, 65, 2508–2516.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ezequiel Perez-Inestrosa.

Additional information

This article is published as part of a themed issue in honour of Jean-Pierre Desvergne on the occasion of his 65th birthday.

Electronic supplementary information (ESI) available: Materials and methods; NMR spectra; characterization of compounds. See DOI: 10.1039/c2pp25025j

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vida, Y., Perez-Inestrosa, E. Cyclophane size drives the photochemical behaviour of benzophenone. Photochem Photobiol Sci 11, 1645–1651 (2012). https://doi.org/10.1039/c2pp25025j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c2pp25025j

Navigation