Issue 19, 2011

Fluid mechanical shear induces structural transitions in assembly of a peptide–lipid conjugate

Abstract

Peptide amphiphiles (PA) can self-assemble into both spherical micelles and worm-like micelles. The control of worm-like micelle formation of PA is an area of active research, most often accomplished by modulating the temperature, salt content, or pH of the environment. In this work, we demonstrate the shear-induced formation of worm-like micelles in our designed peptide amphiphile C16-W3K. Before adding shear, the peptide amphiphiles form spherical micelles in solution and exhibit little to no viscoelasticity. As the solution is subjected to simple shear flow, with increasing shear rate, spherical micelles form rapidly into elongated worm-like micelles up to microns in length. Though it has been reported that some dilute surfactant solutions exhibit shear-induced increase in viscosity due to a shear-induced structural transition, unlike this class of surfactants, the PA micelles change their structures from sphere to worm-like irreversibly and the resultant worm-like micelles are highly stable due to the β-sheet formation, i.e. intermolecular hydrogen bonding, in their peptide regions. In our PA system, shear force induced the change not only of the micelle structure but also of the peptide secondary structure simultaneously. Such hierarchical transitions caused by simple shear make this PA system useful for application as an injectable tissue engineering matrix.

Graphical abstract: Fluid mechanical shear induces structural transitions in assembly of a peptide–lipid conjugate

Article information

Article type
Paper
Submitted
02 May 2011
Accepted
07 Jul 2011
First published
08 Aug 2011

Soft Matter, 2011,7, 8856-8861

Fluid mechanical shear induces structural transitions in assembly of a peptidelipid conjugate

T. Shimada, K. Megley, M. Tirrell and A. Hotta, Soft Matter, 2011, 7, 8856 DOI: 10.1039/C1SM05799E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements