Skip to main content
Log in

The photophysics of alloxazine: a quantum chemical investigation in vacuum and solution

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

(Time-dependent) Kohn-Sham density functional theory and a combined density functional/multi-reference configuration interaction method (DFT/ MRCI) were employed to explore the ground and low-lying electronically excited states of alloxazine, a flavin related molecule. Spin-orbit coupling was taken into account using an efficient, nonempirical mean-field Hamiltonian. Intersystem crossing (ISC) rate constants for ST transitions were computed, employing both direct and vibronic spin-orbit coupling. Solvent effects were mimicked by a conductor-like screening model and micro-hydration with up to six explicit water molecules. Multiple minima were found on the first excited singlet (S1) potential energy hypersurface (PEH) with electronic structures 1(nπ*) and1(ππ*), corresponding to the dark 1 1A″ (S1) state and the nearly degenerate, optically bright 2 1A′ (S2) state in the vertical absorption spectrum, respectively. In the vacuum the minimum of the 1(nπ*) electronic structure is clearly found below that of the 1(ππ*) electronic structure. Population transfer from 1(ππ*) to 1(nπ*) may proceed along an almost barrierless pathway. Hence, in the vacuum, internal conversion (IC) between the 2 1A′ and the 1 1A″ state is expected to be ultrafast and fluorescence should be quenched completely. The depletion of the 1(nπ*) state is anticipated to occur via competing IC and direct ISC processes. In aqueous solution this changes, due to the blue shift of the 1(nπ*) state and the red shift of the 1(ππ*) state. However, the minimum of the 1(nπ*) state still is expected to be found on the S1 PEH. For vibrationally relaxed alloxazines pronounced fluorescence and ISC by a vibronic spin-orbit coupling mechanism is expected. At elevated temperatures or excess energy of the excitation laser, the 1(nπ*) state is anticipated to participate in the deactivation process and to partially quench the fluorescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Koziol, Absorption spectra of riboflavin, lumiflavin, and lumichrome in organic solvents, Cell. Mol. Life Sci., 1965, 21, 189–190.

    Article  CAS  Google Scholar 

  2. J. Koziol, Studies on Flavins in organic solvents-I*. Spectral characteristics of riboflavin, riboflavin tetrabutyrate and lumichrome, Photochem. Photobiol., 1966, 5, 41–54.

    Article  CAS  Google Scholar 

  3. J. Koziol, Fluorometric analyses of riboflavin and its coenzymes, Methods Enzymol., 1971, 18, 253–285.

    Article  CAS  Google Scholar 

  4. P.-S. Song, M. Sun, A. Koziolowa, J. Koziol, Spectroscopic characterization of poly(alanylglycylglycine), J. Am. Chem. Soc., 1974, 96, 4319–4323.

    Article  CAS  Google Scholar 

  5. R. D. Fugate, P.-S. Song, Lifetime study of phototautomerism of alloxazine and lumichromes, Photochem. Photobiol., 1976, 24, 479–481.

    Article  CAS  Google Scholar 

  6. J. D. Choi, R. D. Fugate, P.-S. Song, Nanosecond time-resolved fluorescence of phototautomeric lumichrome, J. Am. Chem. Soc., 1980, 102, 5293–5297.

    Article  CAS  Google Scholar 

  7. E. Sikorska, I. Khmelinskii, M. Hoffmann, I. F. Machado, L. F. V. Ferreira, K. Dobek, J. Karolczak, A. Krawczyk, M. Insinska-Rak, M. Sikorska, Ground- and excited-state double proton transfer in lumichrome/acetic acid system: Theoretical and experimental approach, J. Phys. Chem. A, 2005, 109, 11707–11714.

    Article  PubMed  CAS  Google Scholar 

  8. E. Sikorska, H. Szymusiak, A. Koziolowa, J. Spanget-Larsen, M. Sikorski, Spectroscopy and photophysics of alloxazines studied in their ground and first excited singlet states, J. Photochem. Photobiol., A, 2003, 158, 45–53.

    Article  CAS  Google Scholar 

  9. P. F. Heelis, The photophysical and photochemical properties of flavins (isoalloxazines), Chem. Soc. Rev., 1982, 11, 15–39.

    Article  CAS  Google Scholar 

  10. V. Massey, The chemical and biological versatility of riboflavin, Biochem. Soc. Trans., 2000, 28, 283–296.

    Article  PubMed  CAS  Google Scholar 

  11. A. Losi, Flavin-based blue-light photosensors: A photobiophysics update, Photochem. Photobiol., 2007, 83, 1283–1300.

    Article  PubMed  CAS  Google Scholar 

  12. M. Sikorski, D. Prukala, M. Insinska-Rak, I. Khmelinskii, D. R. Worrall, S. L. Williams, J. Hernando, J. L. Bourdelande, J. Koputa, E. Sikorska, Spectroscopy and photophysics of dimethyl-substituted alloxazines, J. Photochem. Photobiol., A, 2008, 200, 148–160.

    Article  CAS  Google Scholar 

  13. E. Sikorska, I. V. Khmelinskii, W. Prukala, S. L. Williams, M. Patel, D. R. Worrall, J. L. Bourdelande, J. Koput, M. Sikorski, Spectroscopy and photophysics of lumiflavins and lumichromes, J. Phys. Chem. A, 2004, 108, 1501–1508.

    Article  CAS  Google Scholar 

  14. E. Sikorska, I. V. Khemlinskii, D. R. Worrall, S. L. Williams, R. Gonzalez-Moreno, J. L. Bourdelande, J. Koput, M. Sikorski, Photophysics of 1-methyllumichrome, J. Photochem. Photobiol., A, 2004, 162, 193–201.

    Article  CAS  Google Scholar 

  15. M. Sikorski, E. Sikorski, A. Koziolowa, R. G. Moreneo, J. L. Bourdelande, R. P. Steer, F. Wilkinson, Photophysical properties of lumichromes in water, J. Photochem. Photobiol., B, 2001, 60, 114–119.

    Article  CAS  Google Scholar 

  16. M. S. Grodowski, B. Veyret, K. Weiss, Photochemistry of flavins. II. Photophysical properties of alloxazines and isoalloxazines, Photochem. Photobiol., 1977, 26, 341–352.

    Article  CAS  Google Scholar 

  17. E. Sikorska, I. V. Khmelinskii, D. R. Worrall, J. Koput, M. Sikorski, Spectroscopy and photophysics of iso- and alloxazines: Experimental and theoretical study, J. Fluoresc., 2004, 14, 57–64.

    Article  PubMed  CAS  Google Scholar 

  18. J. Komasa, J. Rychlewski, J. Koziol, Electronic structure of alloxazine and its methyl derivatives, THEOCHEM, 1988, 170, 205–212.

    Article  Google Scholar 

  19. H. Szymusiak, J. Komarski, J. Koziol, An INDO/S MO study of alloxazine and its monomethyl derivatives, J. Chem. Soc., Perkin Trans. 2, 1990, 229–236.

    Google Scholar 

  20. M. Sung, T. A. Moore, P.-S. Song, Molecular luminescence studies of flavines. I. Excited states of flavins, J. Am. Chem. Soc., 1972, 94, 1730–1740.

    Article  Google Scholar 

  21. T. Climent, R. González, M. Merchán, L. Serrano-Andrés, Theoretical insight into the spectroscopy and photochemistry of isoalloxazine, the flavin core ring, J. Phys. Chem. A, 2006, 110, 13584–13590.

    Article  PubMed  CAS  Google Scholar 

  22. J. Hasegawa, S. Bureekaew, H. Nakatsuji, SAC-CI theoretical study on the excited states of lumiflavin: Structure, excitation spectrum, and solvation effect, J. Photochem. Photobiol., A, 2007, 189, 205–210.

    Article  CAS  Google Scholar 

  23. E. Sikorska, I. V. Khmelinskii, J. Koput, J. L. Bourdelande, M. Sikorski, Electronic structure of isoalloxazines in their ground and excited states, J. Mol. Struct., 2004, 697, 137–141.

    Article  CAS  Google Scholar 

  24. C. Neiss, P. Saalfrank, M. Parac, S. Grimme, Quantum chemical calculation of excited states of flavin-related molecules, J. Phys. Chem. A, 2003, 107, 140–147.

    Article  CAS  Google Scholar 

  25. K. Zenichowski, M. Gothe, P. Saalfrank, Exciting flavins: Absorption spectra and spin-orbit coupling in light-oxygen-voltage (LOV) domains, J. Photochem. Photobiol., A, 2007, 190, 290–300.

    Article  CAS  Google Scholar 

  26. S. Salzmann, J. Tatchen, C. M. Marian, The photophysics of flavins: What makes the difference between gas phase and aqueous solution?, J. Photochem. Photobiol., A, 2008, 198, 221–231.

    Article  CAS  Google Scholar 

  27. S. Salzmann, V. Martinez-Junza, B. Zorn, S. E. Braslavsky, M. Mansurova, C. M. Marian, W. Gärtner, Photophysical properties of structurally and electronically modified flavin derivatives determined by spectroscopy and theoretical calculations, J. Phys. Chem. A, 2009, 113, 9365–9375.

    Article  PubMed  CAS  Google Scholar 

  28. J. Götze, P. Saalfrank, Serine in BLUF domains displays spectral importance in computational models, J. Photochem. Photobiol., B, 2009, 94, 87–95.

    Article  CAS  Google Scholar 

  29. A. Weigel, A. L. Dobryakov, M. Veiga, J. L. P. Lustres, Photoinduced Processes in Riboflavin: Superposition of ππ*-nπ* states by vibronic coupling, transfer of vibrational coherence, and population dynamics under solvent control, J. Phys. Chem. A, 2008, 112, 12054–12065.

    Article  PubMed  CAS  Google Scholar 

  30. R. Ahlrichs, M. Bär, H.-P. Baron, R. Bauernschmitt, S. Böcker, N. Crawford, P. Deglmann, M. Ehrig, K. Eichkorn, S. Elliott, F. Furche, F. Haase, M. Häser, C. Hättig, H. Horn, C. Huber, U. Huniar, M. Kattannek, A. Köhn, C. Kölmel, M. Kollwitz, K. May, P. Nava, C. Ochsenfeld, H. Öhm, H. Patzelt, D. Rappoport, O. Rubner, A. Schäfer, U. Schneider, M. Sierka, O. Treutler, B. Unterreiner, M. von Arnim, F. Weigend, P. Weis and H. Weiss, TURBOMOLE (Vers. 5.10), Universität Karlsruhe, Karlsruhe, Germany, 2008.

    Google Scholar 

  31. C. Kind, M. Reiher and J. Neugebauer, SNF Version 2.2.1: A Program Package for Numerical Frequency Analyses, Universität Erlangen, Erlangen, Germany, 1999-2002.

    Google Scholar 

  32. A. P. Scott, L. Radom, Harmonic Vibrational Frequencies: An evaluation of Hartree-Fock, Møller-Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors, J. Phys. Chem., 1996, 100, 16502–16513.

    Article  CAS  Google Scholar 

  33. S. Grimme, M. Waletzke, A combination of Kohn-Sham density functional theory and multi-reference configuration interaction methods, J. Chem. Phys., 1999, 111, 5645–5655.

    Article  CAS  Google Scholar 

  34. J. Tatchen, VIBES, Universität Düsseldorf, Düsseldorf, Germany, 2005.

    Google Scholar 

  35. M. Dierksen, PLOTTER Verison 0.3, Westfälische Wilhelms-Universität Münster, Münster, Germany, 2002.

    Google Scholar 

  36. M. Kleinschmidt, J. Tatchen, C. M. Marian, Spin-orbit coupling of DFT/MRCI wavefunctions: Method, test calculations, and application to thiophene, J. Comput. Chem., 2002, 23, 824–833.

    Article  PubMed  CAS  Google Scholar 

  37. M. Kleinschmidt, C. M. Marian, Efficient generation of matrix elements for one-electron spin-orbit operators, Chem. Phys., 2005, 311, 71–79.

    Article  CAS  Google Scholar 

  38. B. A. Hess, C. M. Marian, U. Wahlgren, O. Gropen, A mean-field spin-orbit method applicable to correlated wavefunctions, Chem. Phys. Lett., 1996, 251, 365–371.

    Article  CAS  Google Scholar 

  39. B. Schimmelpfennig, AMFI, Stockholm University, Stockholm, Sweden, 1996.

    Google Scholar 

  40. M. A. El-Sayed, The radiationless processes involving change of multiplicity in the diazenes, J. Chem. Phys., 1962, 36, 573–574.

    Article  CAS  Google Scholar 

  41. J. Tatchen, N. Gilka, C. M. Marian, Intersystem crossing driven by vibronic spin-orbit coupling: A case study on psoralen, Phys. Chem. Chem. Phys., 2007, 9, 5209–5221.

    Article  PubMed  CAS  Google Scholar 

  42. S. Perun, J. Tatchen, C. M. Marian, Singlet and triplet excited states and intersystem crossing in free-base porphyrin: TDDFT and DFT/MRCI study, ChemPhysChem, 2008, 9, 282–292.

    Article  PubMed  CAS  Google Scholar 

  43. A. Klamt, G. Schüürmann, COSMO: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient, J. Chem. Soc., Perkin Trans. 2, 1993, 799–805.

    Google Scholar 

  44. A. Schäfer, A. Klamt, D. Sattel, J. Lohrenz, F. Eckert, COSMO Implementation in TURBOMOLE: Extension of an efficient quantum chemical code towards liquid systems, Phys. Chem. Chem. Phys., 2000, 2, 2187–2193.

    Article  Google Scholar 

  45. C. Reichardt, Solvent effects in organic chemistry, VCH, Weinheim, 1990.

    Google Scholar 

  46. K. Tomic, J. Tatchen, C. M. Marian, Quantum chemical investigation of the electronic spectra of the keto, enol, and keto-imine tautomers of cytosine, J. Phys. Chem. A, 2005, 109 37, 8410–8418.

    Article  PubMed  CAS  Google Scholar 

  47. S. Salzmann, M. Kleinschmidt, J. Tatchen, R. Weinkauf, C. M. Marian, Excited states of thiophene: Ring opening as deactivation mechanism, Phys. Chem. Chem. Phys., 2008, 10, 380.

    Article  PubMed  CAS  Google Scholar 

  48. N. Gavrilov, S. Salzmann, C. M. Marian, Deactivationvia ring opening: A quantum chemical study of the excited states of furan and comparison to thiophene, Chem. Phys., 2008, 349, 269–277.

    Article  CAS  Google Scholar 

  49. R. H. Dekker, B. N. Srinivasan, J. R. Huber, K. Weiss, Photochemistry of flavins-I. Conventional and laser flash photolysis study of alloxazine, Photochem. Photobiol., 1973, 18, 457–466.

    Article  PubMed  CAS  Google Scholar 

  50. M. Sikorski, E. Sikorska, D. R. Worrall, F. Wilkinson, Efficiency of singlet oxygen generation by alloxazines and isoalloxazines, J. Chem. Soc., Faraday Trans., 1998, 94, 2347–2353.

    Article  Google Scholar 

  51. Y. J. Bomble, K. W. Sattelmeyer, J. F. Stanton, J. Gauss, On the vertical excitation energy of cyclopentadiene, J. Chem. Phys., 2004, 121, 5236–5240.

    Article  PubMed  CAS  Google Scholar 

  52. E. R. Davidson, A. A. Jarzecki, Zero point corrections to vertical excitation energies, Chem. Phys. Lett., 1998, 285, 155–159.

    Article  CAS  Google Scholar 

  53. L. S. Cederbaum, W. Domcke, A many-body approach to the vibrational structure in molecular electronic spectra. I. Theory, J. Chem. Phys., 1976, 64, 603–611.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Electronic supplementary information (ESI) available: Experimental data, optimized geometries of alloxazine water complexes, calculation of the intersystem crossing rate constants. See DOI: 10.1039/b9pp00022d

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salzmann, S., Marian, C.M. The photophysics of alloxazine: a quantum chemical investigation in vacuum and solution. Photochem Photobiol Sci 8, 1655–1666 (2009). https://doi.org/10.1039/b9pp00022d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b9pp00022d

Navigation