Skip to main content
Log in

Plasmon-induced photothermal cell-killing effect of gold colloidal nanoparticles on epithelial carcinoma cells

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Gold colloidal nanoparticles were prepared by the liquid laser ablation of a gold metal plate in water and also by the citratereduction of HAuCl4·4H2O. The gold colloidal nanoparticles with the plasmonic band strongly absorb light, which is converted to the photothermal energy. This photothermal energy gives a cytotoxic effect on epithelial carcinoma cells. Interestingly, we found that the size and shape of the nanoparticles are changed by light during the photothermal process in vitro. The cervical carcinoma cell line (HeLa cell) was incubated with the colloidal gold nanoparticles and then exposed to continuous visible light at 400–600 nm with UV- and heat-cutoff filters. The distinct cell-killing effect was observed by this procedure. In the absence of the gold colloidal nanoparticles, only a small amount of cells were photothermally destroyed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. E. McNeil, Nanotechnology for the biologist, J. Leukocyte Biol., 2005, 78, 585–594.

    Article  CAS  Google Scholar 

  2. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts and P. Walter, in Molecular biology of the cell, ed. S. Gibbs, Garland Science, Taylor & Francis Group, New York, 4th edn, 2002, pp. 616–619.

  3. I. Brigger, C. Dubernet, P. Couvreur, Nanoparticles in cancer therapy and diagnosis, Adv. Drug Delivery Rev., 2002, 54, 631–651.

    Article  CAS  Google Scholar 

  4. Y. Matsumura, H. Maeda, A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs, Cancer Res., 1986, 46, 6387–6392.

    CAS  PubMed  Google Scholar 

  5. D. R. Siwak, A. M. Tari, G. Lopez- Berestein, The potential of drug-carrying immunoliposomes as anticancer agents, Clin. Cancer Res., 2002, 8, 955–956.

    CAS  PubMed  Google Scholar 

  6. N. Kohler, C. Sun, J. Wang, M. Zhan, Langmuir, 2005, 21, 8858–8864.

    Article  CAS  Google Scholar 

  7. B. D. Chithrani, A. A. Ghazani, W. C. W. Chan, Nano Lett., 2006, 64, 662–668.

    Article  CAS  Google Scholar 

  8. W. P. McConnell, J. P. Novak, L. C. Brousseau, R. R. Fuierer, R. C. Tenent, D. L. Feldheim, Electronic and optical properties of chemically modified metal nanoparticles and molecularly bridged nanoparticle arrays, J. Phys. Chem. B, 2000, 104, 8925–8930.

    Article  CAS  Google Scholar 

  9. U. Kreibig and M. Vollmer, in Optical Properties of Metal Clusters, Springer Series in Materials Science 25, ed. H. K. V. Lotsch, Springer-Verlag, Berlin, 1995, pp. 14–21.

  10. M. A. EI-Sayed, Some interesting properties of metals confined in time and nanometer space of different shapes, Acc. Chem. Res., 2001, 34, 257–264.

    Article  Google Scholar 

  11. S. Link, M. A. El-Sayed, Optical properties and ultrafast dynamics of metallic nanocrystals, Annu. Rev. Phys. Chem., 2003, 54, 331–366.

    Article  CAS  Google Scholar 

  12. S. Link, M. A. El-Sayed, Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals, Int. Rev. Phys. Chem., 2000, 19, 409–453.

    Article  CAS  Google Scholar 

  13. X. Huang, I. H. El-Sayed, W. Qian, M. A. El-Sayed;, Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods, J. Am. Chem. Soc., 2006, 128, 2115–2120.

    Article  CAS  Google Scholar 

  14. D. O. Lapotko, E. Lukianova, A. A. Oraevsky, Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles, Lasers Surg. Med., 2006, 38, 631–642.

    Article  Google Scholar 

  15. H. Takahashi, T. Niidome, A. Nariai, Y. Niidome, S. Yamada, Gold nanorod-sensitized cell death: microscopic observation of single living cells irradiated by pulsed near-infrared laser light in the presence of gold nanorods, Chem. Lett., 2006, 35, 500–501.

    Article  CAS  Google Scholar 

  16. G. Frens, Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions, Nature Phys. Sci., 1973, 241, 20–22.

    Article  CAS  Google Scholar 

  17. C. F. Bohern and D. R. Huffman, Absorption and scattering of light by small particles. John Wiley, New York, 1983.

    Google Scholar 

  18. M. Kerker, in The Scattering of light and Other Electromagnetic Radiation, ed. Ernest M. Loebl, Academic Press, New York, 1969, pp. 27–93.

  19. S. Link, M. B. Mohamed, M. A. El-Sayed, Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant, J. Phys. Chem. B, 1999, 103, 3073–3077.

    Article  CAS  Google Scholar 

  20. C. D. Wagner, W. M. Riggs, L. E. Davis, S. F. Moulder and G. E. Mullenberg, in Handbook of X-ray photoelectron spectroscopy, ed. G. E. Mullenberg, Perkin-Elmer Corporation Physical Electronics Division, New York, 1979, p. 154.

  21. Z. P. Xu, Q. H. Zeng, G. Q. Lu, A. B. Yu, Inorganic nanoparticles as carriers for efficient cellular delivery, Chem. Eng. Sci., 2006, 61, 1027–1040.

    Article  CAS  Google Scholar 

  22. I. H. El-Sayed, X. Huang, M. A. El-Sayed, Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles, Cancer Lett., 2006, 239, 129–135.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihumi Kusumoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdulla-Al-Mamun, M., Kusumoto, Y., Mihata, A. et al. Plasmon-induced photothermal cell-killing effect of gold colloidal nanoparticles on epithelial carcinoma cells. Photochem Photobiol Sci 8, 1125–1129 (2009). https://doi.org/10.1039/b907524k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b907524k

Navigation