Skip to main content

Advertisement

Log in

Hydrogen photoproduction by use of photosynthetic organisms and biomimetic systems

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Hydrogen can be important clean fuel for future. Among different technologies for hydrogen production, oxygenic natural and artificial photosyntheses using direct photochemistry in synthetic complexes have a great potential to produce hydrogen, since both use clean and cheap sources: water and solar energy. Artificial photosynthesis is one way to produce hydrogen from water using sunlight by employing biomimetic complexes. However, splitting of water into protons and oxygen is energetically demanding and chemically difficult. In oxygenic photosynthetic microorganisms such as algae and cyanobacteria, water is split into electrons and protons, which during primary photosynthetic process are redirected by photosynthetic electron transport chain, and ferredoxin, to the hydrogen-producing enzymes hydrogenase or nitrogenase. By these enzymes, e and H+ recombine and form gaseous hydrogen. Biohydrogen activity of hydrogenase can be very high but it is extremely sensitive to photosynthetic O2. In contrast, nitrogenase is insensitive to O2, but has lower activity. At the moment, the efficiency of biohydrogen production is low. However, theoretical expectations suggest that the rates of photon conversion efficiency for H2 bioproduction can be high enough (>10%). Our review examines the main pathways of H2 photoproduction by using of photosynthetic organisms and biomimetic photosynthetic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Abraham, Toward a more secure and cleaner energy future for America: national hydrogen energy roadmap; production, delivery, storage, conversion, applications, public education and outreach, U.S. Department, of Energy, Washington, DC, 2002.

    Google Scholar 

  2. T. Riis, E. F. Hagen, P. J. S. Vie, and Ø. Ulleberg, Hydrogen Production–Gaps and Priorities, 2005.

    Google Scholar 

  3. R. E. Blankenship, Molecular Mechanisms of Photosynthesis, Blackwell Science, Oxford, U.K., 2002.

    Book  Google Scholar 

  4. W. S. Chow, Photosynthesis: from natural towards artificial, J. Biol. Phys., 2003, 29, 447–459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. D. A. LaVan and J. N. Cha, Approaches for biological and biomimetic energy conversion, Proc. Natl. Acad. Sci. USA, 2006, 103, 5251–5255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. O. Kruse, J. Rupprecht, K. P. Bader, S. Thomas-Hall, P. M. Schenk, G. Finazzi and B. Hankamer, Improved photobiological H2 production in engineered green algal cells, J. Biol. Chem., 2005a, 280, 34170–34177.

    Article  CAS  PubMed  Google Scholar 

  7. J. Rupprecht, B. Hankamer, J. H. Mussgnug, G. Ananyev, G. C. Dismukes and O. Kruse, Perspectives and advances of biological H2 production in microorganisms, Appl. Microbiol. Biotechnol., 2006, 72, 442–449.

    Article  CAS  PubMed  Google Scholar 

  8. O. Kruse, J. Rupprecht, J. H. Mussgnug, G. C. Dismukes and B. Hankamer, Photosynthesis: a blue print for energy capture and conversion technologies, Photochem. Photobiol., 2005b, 4, 957–970.

    Article  CAS  Google Scholar 

  9. J. H. Alstrum-Acevedo, M. K. Brennaman and T. J. Meyer, Forum chemical approaches to artificial photosynthesis. 2, Inorg. Chem., 2005, 44 20, 6802–6827.

    Article  CAS  PubMed  Google Scholar 

  10. S. I. Allakhverdiev, U. Ozdemir, J. Harnois, N. Karacan, S. Hotchandani, V. V. Klimov, N. Murata and R. Carpentier, Reconstruction of the water-oxidizing complex in manganese-depleted photosystem II preparations using mononuclear manganese complexes, Photochem. Photobiol., 1999, 70, 57–63.

    Article  CAS  Google Scholar 

  11. M. Yagi and M. Kaneko, Molecular Catalysts for Water Oxidation, Chem. Rev., 2001, 101, 21–35.

    Article  CAS  PubMed  Google Scholar 

  12. R. Lomoth, A. Magnuson, M. Sjödin, P. Huang, S. Styring, L. Hammarström, Mimicking the electron donor side of Photosystem II in artificial photosynthesis, Photosynth. Res., 2006, 87, 25–40.

    Article  CAS  PubMed  Google Scholar 

  13. T. Nagata, T. Nagasawa, S. K. Zharmukhamedov, V. V. Klimov and S. I. Allakhverdiev, Reconstitution of the water-oxidizing complex in manganese-depleted photosystem II preparations using synthetic binuclear Mn(ii) and Mn(iv) complexes: production of hydrogen peroxide, Photosynth. Res., 2007, 93, 133–138.

    Article  CAS  PubMed  Google Scholar 

  14. J. P. McEvoy and G. W. Brudvig, Water-Splitting Chemistry of Photosystem II, Chem. Rev., 2006, 106, 4455–4483.

    Article  CAS  PubMed  Google Scholar 

  15. X. Hu, B. M. Cossairt, B. S. Brunschwig, N. S. Lewis and J. C. Peters, Electrocatalytic hydrogen evolution by cobalt difluoroboryl-diglyoximate complexes, Chem. Commun, 2005, 4723–4725.

    Google Scholar 

  16. T. Nagasawa and T. Nagata, Synthesis and electrochemistry of Co(iii) and Co(i) complexes having C5Me5 auxiliary, Biochim. Biophys. Acta, 2007, 1767, 666–670.

    Article  CAS  PubMed  Google Scholar 

  17. S. Ogo, R. Kabe, K. Uehara, B. Kure, T. Nishimura, S. C. Menon, R. Harada, S. Fukuzumi, Y. Higuchi, T. Ohhara, T. Tamada and R. Kuroki, A dinuclear Ni(μ-H)Ru complex derived from H2, Science, 2007, 316, 585–587.

    Article  CAS  PubMed  Google Scholar 

  18. T. B. Rauchfuss, A Promising mimic of hydrogenase activity, Science, 2007, 316, 553–554.

    Article  CAS  PubMed  Google Scholar 

  19. S. Licheng, A. Bjoern and O. Sascha, Iron hydrogenase active site mimics in supramolecular systems aiming for light-driven hydrogen production, Coord. Chem. Rev., 2005, 249, 1563–1663.

    Google Scholar 

  20. V. A. Boichenko, E. Greenbaum, and M. Seibert, Hydrogen production by photosynthetic microorganisms, in Photoconversion of solar energy, molecular to global photosynthesis, eds. M.D. Archer, and J. Barber, Imperial college Press, London, 2004, Vol. 2, pp. 397–452.

    Chapter  Google Scholar 

  21. D. Dutta, D. De, S. Chaudhuri, and S. K. Bhattacharya, Hydrogen production by cyanobacteria, Microb. Cell Fact., 2005, 4, 36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. M. L. Ghirardi, M. C. Posewitz, P.-C. Maness, A. Dubini, J. Yu and M. Seibert, Hydrogenase and hydrogen photoproduction in oxygenic photosynthetic organisms, Annu. Rev. Plant Biol., 2007, 58, 71–91.

    Article  CAS  PubMed  Google Scholar 

  23. M. L. Ghirardi, Development of algal systems for hydrogen photoproduction: addressing the hydrogenise oxygen sensitivity problem, in Artificial Photosynthesis: From Basic Biology to Industrial Application, eds. A. F. Collings, and C. Critchley, Wiley-Verlag and Co. KGaA, Weinheim, 2005, pp. 213–227.

    Google Scholar 

  24. R. C. Prince and H. S. Kheshgi, The photobiological production of hydrogen: potential efficiency and effectiveness as a renewable fuel, Crit. Rev. Microbiol., 2005, 31, 19–31.

    Article  CAS  PubMed  Google Scholar 

  25. L. Florin, A. Tsokoglou and T. Happe, A novel type of iron hydrogenase in the green alga Scenedesmus obliquus is linked to the photosynthetic electron transport chain, J. Biol. Chem., 2001, 276, 6125–6132.

    Article  CAS  PubMed  Google Scholar 

  26. A. Melis, L. Zhang, M. Forestier, M. L. Ghirardi and M. Seibert, Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii, Plant Physiol., 2000, 122, 127–133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. M. L. Ghirardi, L. Zhang, J. W. Lee, T. Flynn, M. Seibert, E. Greenbaum and A. Melis, Microalgae: a green source of renewable H2, Trends Biotechnol., 2000, 18, 506–511.

    Article  CAS  PubMed  Google Scholar 

  28. L. Zhang, P. Happe and A. Melis, Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga), Planta, 2002, 214, 552–561.

    Article  CAS  PubMed  Google Scholar 

  29. A. Melis, Bioengineering of green algae to enhance photosynthesis and hydrogen production, in Artificial Photosynthesis: From Basic Biology to Industrial Application, eds. A.F. Collings, and C. Critchley, Wiley-Verlag and Co. KGaA, Weinheim, 2005, pp. 229–240.

    Google Scholar 

  30. T. V. Laurinavichene, I. V. Tolstygina, R. R. Galiulina, M. L. Ghirardi, M. Seibert and A. A. Tsygankov, Different methods to deprive Chlamydomonas reinhardtii cultures of sulfur for subsequent hydrogen photoproduction, Int. J. Hydrog. Ener., 2002, 27, 1245–1249.

    Article  CAS  Google Scholar 

  31. A. Melis, J. Neidhardt and J. R. Benemann, Dunaliella salina (Chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells, J. Appl. Phycol., 1999, 10, 515–525.

    Article  Google Scholar 

  32. M. L. Ghirardi and W. Amos, Renewable hydrogen from green algae, Biocycle, 2004, 45, 59–62.

    Google Scholar 

  33. T. V. Laurinavichene, A. S. Fedorov, M. L. Ghirardi, M. Seibert and A. A. Tsygankov, Demonstration of sustained hydrogen photoproduction by immobilized, sulfur-deprived Chlamydomonas reinhardtii cells, Int. J. Hydrog. Ener., 2006, 31, 659–667.

    Article  CAS  Google Scholar 

  34. K. K. Rao and D. O. Hall, Hydrogen production by cyanobacteria: potential, problems and prospects, J. Mar. Biotecnol., 1996, 4, 10–15.

    CAS  Google Scholar 

  35. T. V. Laurinavichene, S. N. Kosourov, M. L. Ghirardi, M. Seibert and A. A. Tsygankov, Prolongation of H2 photoproduction by immunobilized, sulfur-limited Chlamydomonas reinhardtii cultures, J. Biotech., 2008, 134, 275–277.

    CAS  Google Scholar 

  36. B. Loll, J. Kern, W. Saenger, A. Zouni and J. Biesiadka, Towards complete cofactor arrangement in the 3.0 A resolution structure of photosystem II, Nature, 2005, 438, 1040–1044.

    Article  CAS  PubMed  Google Scholar 

  37. V. V. Klimov, S. I. Allakhverdiev, V. A. Shuvalov and A. A. Krasnovsky, Effect of extraction and readdition of manganese on light reactions of photosystem II preparations, FEBS Lett., 1982, 148, 307–312.

    Article  CAS  PubMed  Google Scholar 

  38. V. V. Klimov, G. M. Ananyev, S. I. Allakhverdiev, S. K. Zharmukhamedov, M. Mulay, U. Hedge and S. Padhye, Photoreaction and photoinactivation of photosystem II after a complete removal of manganese from pea subchloroplast particles, in Current Research in Photosynthesis, ed. M. Baltscheffsky, Kluwer Academic Publishers, Dordrecht, 1990, pp. 247–254.

    Chapter  Google Scholar 

  39. S. I. Allakhverdiev, M. S. Karacan, G. Somer, N. Karacan, E. M. Khan, S. Y. Rane, S. Padhye, V. V. Klimov and G. Renger, Reconstitution of the water-oxidizing complex in manganese depleted photosystem II complexes by using synthetic binuclear manganese complexes, Biochem, 1994, 33, 12210–12214.

    Article  CAS  Google Scholar 

  40. S. I. Allakhverdiev, M. S. Karacan, G. Somer, N. Karacan, E. M. Khan, S. Y. Rane, S. Padhye, V. V. Klimov and G. Renger, Binuclear manganese (III) complexes as electron donors in D1/D2/cytochrome b559 preparations isolated from spinach photosystem II membrane fragments, Z. Naturforsh., 1994, 49c, 587–592.

    Article  Google Scholar 

  41. S. Hotchandani, U. Ozdemir, C. Nasr, S. I. Allakhverdiev, N. Karacan, V. V. Klimov, P. V. Kamat and R. Carpentier, Redox characterization of schiff base manganese and cobalt complexes related to water-oxidizing complex of photosynthesis, Bioelectrochem. Bioenerg., 1999, 48, 53–59.

    Article  CAS  PubMed  Google Scholar 

  42. S. Hotchandani, U. Ozdemir, S. I. Allakhverdiev, N. Karacan, V. V. Klimov, P. V. Kamat and R. Carpentier, Redox characteristics of manganese and cobalt complexes obtained from pyridine N-oxide, Bioelectrochem., 2000, 51, 175–180.

    Article  CAS  Google Scholar 

  43. T. Nagata, S. K. Zharmukhamedov, A. A. Khorobrykh, V. V. Klimov and S. I. Allakhverdiev, Reconstitution of the water-oxidizing complex in manganese-depleted.photosystem II preparations using synthetic Mn complexes: a fluorine-19 NMR study of the reconstitution process, Photosynth. Res., 2008, 98, 277–284.

    Article  CAS  PubMed  Google Scholar 

  44. V. D. Kreslavski, R. Carpentier, V. V. Klimov, N. Murata and S. I. Allakhverdiev, Molecular mechanisms of stress resistance of the photosynthetic apparatus, Membr. Cell Biol., 2007, 1, 185–205.

    Google Scholar 

  45. S. I. Allakhverdiev, V. D. Kreslavski, V. Klimov, D. A. Los, R. Carpentier and P. Mohanty, Heat stress: An overview of molecular responses in photosynthesis, Photosynth. Res., 2008, 98, 541–550.

    Article  CAS  PubMed  Google Scholar 

  46. A. K. Jones, S. E. Lamle, H. R. Pershad, K. A. Vincent, S. P. Albracht and F. A. Armstrong, Enzyme electrokinetics: electrochemical studies of the anaerobic interconversions between active and inactive states of Allochromatium vinosum [NiFe]-hydrogenase, J. Am. Chem. Soc., 2003, 125, 8505–8514.

    Article  CAS  PubMed  Google Scholar 

  47. M. L. Ghirardi, R. K. Togasaki and M. Seibert, Oxygen sensitivity of algal H2-production, Appl. Biochem. Biotechnol., 1997, 63–65, 141–151.

    Article  PubMed  Google Scholar 

  48. S. Kosourov, M. Seibert and M. L. Ghirardi, Effects of extracellular pH on the metabolic pathways in sulfur-deprived, H2-producing cultures, Plant Cell Physiol., 2003, 44, 146–155.

    Article  CAS  PubMed  Google Scholar 

  49. V. V. Makarova, S. Kosourov, T. E. Krendeleva, B. K. Semin, G. P. Kukarskikh, A. B. Rubin, R. T. Sayre, M. L. Ghirardi and M. Seibert, Photoproduction of hydrogen by sulfur-deprived C. reinhardtii mutants with impaired photosystem II photochemical activity, Photosynth. Res., 2007, 94, 79–89.

    Article  CAS  PubMed  Google Scholar 

  50. V. A. Boichenko, S. I. Allakhverdiev, V. G. Ladygin and V. V. Klimov, Functional conjunction of hydrogenase with photosystem II in whole cells of Chlamydomonas reinhardtii mutants, Dokl. AN SSSR, 1986, 995–998.

    Google Scholar 

  51. S. V. Mal’tsev, S. I. Allakhverdiev, V. V. Klimov and A. A. Krasnovsky, Hydrogen evolution by subchloroplast preparations of photosystem II from pea and spinach, FEBS Lett., 1988, 240, 1–5.

    Article  PubMed  Google Scholar 

  52. V. V. Klimov, S. I. Allakhverdiev, S. Demeter and A. A. Krasnovsky, Photoreduction of pheophytin in the photosystem 2 of chloroplasts depending on the oxidation-reduction potential of the medium, Dokl. Acad. Nauk SSSR, 1979, 249, 227–230.

    CAS  Google Scholar 

  53. S. I. Allakhverdiev and V. V. Klimov, Photoreduction of NADP+ in photosystem II of higher plants: requirement for manganese, Z. Naturforsch., 1992, 47c, 57–62.

    Article  Google Scholar 

  54. U. Koelle, Transition metal-catalyzed proton reduction, New J. Chem., 1992, 16, 157–169.

    CAS  Google Scholar 

  55. M. Chou, C. Creutz, D. Mahajan, N. Sutin and A. P. Zipp, Nature of Bis(2,2′-bipyridine)rhodium(I) in Aqueous Solutions, Inorg. Chem., 1982, 21, 3989–3997.

    Article  CAS  Google Scholar 

  56. D. Lexa, V. Grass, J.-M. Savéant, Electrochemical generation of rhodium porphyrin hydride. Catalysis of hydrogen evolution, J. Am. Chem. Soc., 1997, 119, 7526–7532.

    Article  Google Scholar 

  57. J. I. Goldsmith, W. R. Hudson, M. S. Lowry, T. H. Anderson and S. Bernhard, Discovery and high-throughput screening of heteroleptic iridium complexes for photoinduced hydrogen production, J. Am. Chem. Soc., 2005, 127, 7502–7510.

    Article  CAS  PubMed  Google Scholar 

  58. M. Elvington, J. Brown, S. M. Arachchige, M. Shamindri and K. J. Brewer, Photocatalytic hydrogen production from water employing a Ru, Rh, Ru molecular device for photoinitiated electron collection, J. Am. Chem. Soc., 2007, 129, 10644–10645.

    Article  CAS  PubMed  Google Scholar 

  59. H. Ozawa, M. Haga and K. Sakai, A photo-hydrogen-evolving molecular device driving visible-light-induced EDTA-reduction of water into molecular hydrogen, J. Am. Chem. Soc., 2006, 128, 4926–4927.

    Article  CAS  PubMed  Google Scholar 

  60. R. M. Kellet and T. G. Spiro, cobalt(1) porphyrin catalysis of hydrogen production from water, Inorg. Chem., 1985, 24, 2378–2382.

    Article  Google Scholar 

  61. A. Fihri, V. Artero, M. Razavet, C. Baffert, W. Leibl and M. Fontecave, Cobaloxime-based photocatalytic devices for hydrogen production, Angew. Chem. Int. Ed., 2008, 47, 564–567.

    Article  CAS  Google Scholar 

  62. I. Bhugun, D. Lexa, J.-M. Savéant, Homogeneous catalysis of electrochemical hydrogen evolution by iron (0) porphyrins, J. Am. Chem. Soc., 1996, 118, 3982–3983.

    Article  CAS  Google Scholar 

  63. T. L. James, L. S. Cai, M. C. Muetterties and R. H. Holm, Dihydrogen evolution by protonation reactions of nickel(I), Inorg. Chem., 1996, 35, 4148–4161.

    Article  CAS  PubMed  Google Scholar 

  64. A. Kayal and T. B. Rauchfuss, Protonation studies of the new iron carbonyl cyanide trans-[Fe(CO)3(CN)2]2−: implications with respect to hydrogenases, Inorg. Chem., 2003, 42, 5046–5048.

    Article  CAS  PubMed  Google Scholar 

  65. Coord. Chem. Rev., 2005, 249, pp. 1517–1690, Special issue on Hydrogenases, edited by C. J. Pickett and S. P. Best.

    Google Scholar 

  66. C. Tard, X. M. Liu, S. K. Ibrahim, M. Bruschi, L. De Gioia, S. C. Davies, X. Yang, L. S. Wang, G. Sawers and C. J. Pickett, Synthesis of the H-cluster framework of iron-only hydrogenase, Nature, 2005, 433, 610–613.

    Article  CAS  PubMed  Google Scholar 

  67. H. Holm, P. Kennepohl and E. I. Solomon, Structural and functional aspects of metal sites in biology, Chem. Rev., 1996, 96, 2239–2314.

    Article  CAS  PubMed  Google Scholar 

  68. M. Bruschi, P. Fantucci, L. De Gioia, Density functional theory investigation of the active site of Fe-hydrogenases. Systematic study of the effects of redox state and ligands hardness on structural and electronic properties of complexes related to the [2Fe]H subcluster, Inorg. Chem., 2004, 43, 3733–3741.

    Article  CAS  PubMed  Google Scholar 

  69. B. Hinnermann, P. G. Moses, J. Bonde, K. P. Jorgensen, J. H. Nielsen, S. Horch, I. Chorkendorff and J. K. Norskov, Biomimetic Hydrogen Evolution: MoS2 Nanoparticles as Catalyst for Hydrogen Evolution, J. Am. Chem. Soc., 2005, 127, 5308–5309.

    Article  CAS  Google Scholar 

  70. A. A. Tsygankov, A. S. Fedorov, S. N. Kosourov and K. K. Rao, Hydrogen production by cyanobacteria in an automated outdoor photobioreactor under aerobic conditions, Biotechnol. Bioeng., 2002, 80, 777–783.

    Article  CAS  PubMed  Google Scholar 

  71. A. Shah, P. Torres, R. Tscharner, N. Wyrsch and H. Keppner, Photovoltaic technology: The case for thin-film solar cells, Science, 1999, 285, 692–698.

    Article  CAS  PubMed  Google Scholar 

  72. M. Grätzel, Photoelectrochemical cells, Nature, 2001, 414, 338–344.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suleyman I. Allakhverdiev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allakhverdiev, S.I., Kreslavski, V.D., Thavasi, V. et al. Hydrogen photoproduction by use of photosynthetic organisms and biomimetic systems. Photochem Photobiol Sci 8, 148–156 (2009). https://doi.org/10.1039/b814932a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b814932a

Navigation