Issue 7, 2004

Viscoelastic and small angle neutron scattering studies of concentrated protein solutions

Abstract

Small angle neutron scattering (SANS) and rheological measurements have been used to study horse heart cytochrome C, a globular protein characterized by approximately spherical shape (a × b × b = 15 × 17 × 17 Å3) with a molecular weight of 12 384 Da and a pI = 10.2. Two series of very concentrated protein solutions have been investigated at pD 5.4 and 11.0, respectively, the volume fraction of the protein spanning from 0.1 to 0.5. The Krieger–Dougherty model was applied to describe the relation between relative high shear viscosity of the solution and volume fraction of the protein at both pD in order to elucidate the charge effect on the interaction potential. The SANS intensity distributions at pD 5.4 were fitted using the GOCM model with an excellent agreement between the theory and experiments up to the volume fraction ϕ of 0.4. At pD 11.0 the intensity distribution at ϕ = 0.1 can be fitted with a pure form factor (oblate ellipsoid), suggesting that under this condition the cytochrome C molecules are almost uncharged and preserve the native molecular size. Addition of salt induces the transformation from liquid to a gel. This is a result of formation of ordered fractal clusters internally as evident from appearance of a second interaction peak at very low Q (magnitude of the scattering vector). The appearance of the low Q peak is also accompanied by a strong increase in the relative viscosity. These phenomena taken together can be considered as the signature of the gelation process.

Article information

Article type
Paper
Submitted
10 Dec 2003
Accepted
04 Feb 2004
First published
05 Mar 2004

Phys. Chem. Chem. Phys., 2004,6, 1388-1395

Viscoelastic and small angle neutron scattering studies of concentrated protein solutions

B. Lonetti, E. Fratini, S. H. Chen and P. Baglioni, Phys. Chem. Chem. Phys., 2004, 6, 1388 DOI: 10.1039/B316144G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements