Issue 8, 2011

Influence of carbon towards improved lithium storage properties of Li2MnSiO4 cathodes

Abstract

Superior lithium storage in Li2MnSiO4 cathodes was observed by altering carbon content during the formulation of electrodes. Initially, Li2MnSiO4 was prepared by a conventional solid-state reaction at 900 °C under Ar flow with a fixed amount of adipic acid, which acts as a gelating agent during synthesis. The phase formation was confirmed through powder X-ray diffraction measurements. Scanning electron microscope pictures indicate the particulate morphology of synthesized Li2MnSiO4 particles. Various compositions of electrodes were formulated using the conducting carbon (ketjen black) from 3 to 11 mg along with active material. All the fabricated electrodes were cycled in a Li/Li2MnSiO4 cell configuration to evaluate its lithium storage performance at 0.05 C rate. Among the electrodes, 42% carbon in the composite electrode exhibited a very stable discharge behaviour ∼140 mA h g−1 for 40 cycles at room temperature. Such storage performance was ascribed to the improved electronic conductivity of Li2MnSiO4 electrodes by incorporating carbon. This improvement was supported by electrochemical impedance spectroscopy measurements. Rate performance studies were also conducted and presented in the manuscript.

Graphical abstract: Influence of carbon towards improved lithium storage properties of Li2MnSiO4 cathodes

Article information

Article type
Communication
Submitted
14 Oct 2010
Accepted
16 Dec 2010
First published
17 Jan 2011

J. Mater. Chem., 2011,21, 2470-2475

Influence of carbon towards improved lithium storage properties of Li2MnSiO4 cathodes

V. Aravindan, K. Karthikeyan, K. S. Kang, W. S. Yoon, W. S. Kim and Y. S. Lee, J. Mater. Chem., 2011, 21, 2470 DOI: 10.1039/C0JM03471A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements