Issue 5, 2014

Exploring non-covalent interactions in guanine- and xanthine-based model DNA quadruplex structures: a comprehensive quantum chemical approach

Abstract

The study aimed to cast light on the structure and internal energetics of guanine- and xanthine-based model DNA quadruplexes and the physico-chemical nature of the non-covalent interactions involved. Several independent approaches were used for this purpose: DFT-D3 calculations, Quantum Theory of Atoms in Molecules, Natural Bond Orbital Analysis, Energy Decomposition Analysis, Compliance Constant Theory, and Non-Covalent Interaction Analysis. The results point to an excellent degree of structural and energetic compatibility between the two types of model quadruplexes. This fact stems from both the structural features (close values of van der Waals volumes, pore radii, geometrical parameters of the H-bonds) and the energetic characteristics (comparable values of the energies of formation). It was established that hydrogen bonding makes the greatest (∼50%) contribution to the internal stability of the DNA quadruplexes, whereas the aromatic base stacking and ion coordination terms are commensurable and account for the rest. Energy decomposition analysis performed for guanine (Gua) and xanthine (Xan) quartets B4 and higher-order structures consisting of two or three stacked quartets indicates that whereas Gua structures benefit from a high degree of H-bond cooperativity, Xan models are characterized by a more favorable and cooperative π–π stacking. The results of electron density topological analysis show that Na+/K+ ion coordination deeply affects the network of non-covalent interactions in Gua models due to the change in the twist angle between the stacked tetrads. For Xan models, ion coordination makes tetrads in stacks more planar without changing the twist angle. Therefore, the presence of the ion seems to be essential for the formation of planar stacks in Xan-based DNA quadruplexes. Detailed study of the nature of ion-base coordination suggests that this interaction has a partially covalent character and cannot be considered as purely electrostatic. Investigation of the H-bond and ion-base coordination strengths by various independent approaches agrees well with the results of QTAIM analysis.

Graphical abstract: Exploring non-covalent interactions in guanine- and xanthine-based model DNA quadruplex structures: a comprehensive quantum chemical approach

Supplementary files

Article information

Article type
Paper
Submitted
12 Sep 2013
Accepted
14 Nov 2013
First published
15 Nov 2013
This article is Open Access
Creative Commons BY-NC license

Phys. Chem. Chem. Phys., 2014,16, 2072-2084

Exploring non-covalent interactions in guanine- and xanthine-based model DNA quadruplex structures: a comprehensive quantum chemical approach

Y. P. Yurenko, J. Novotný, V. Sklenář and R. Marek, Phys. Chem. Chem. Phys., 2014, 16, 2072 DOI: 10.1039/C3CP53875C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements