Issue 10, 2018

Layered hybrid perovskite solar cells based on single-crystalline precursor solutions with superior reproducibility

Abstract

Restrained by the difficulties in the stability, crystal processing, and single-crystalline device fabrication based on the prototype perovskite of CH3NH3PbI3, there is a growing interest in finding a way to introduce long-chain organic ammonium into CH3NH3PbI3 to tackle these challenges, leading to emerging layered perovskite materials. Here, we first report the bulk crystal growth in an ambient atmosphere on single crystals of layered perovskite (n-C4H9NH3)2(CH3NH3)n−1PbnI3n+1 (n = 1, 3, and 4) obtained using fine control of the molar ratio of perovskite precursors by the top seeded solution growth (TSSG) method. The fundamental properties (band gap, PL spectra and thermal stability) of (n-C4H9NH3)2(CH3NH3)n−1PbnI3n+1 (n = 1, 3, and 4) single crystals are investigated. More importantly, we investigated the formation of (n-C4H9NH3)2(CH3NH3)n−1PbnI3n+1 (n = 3 and 4) thin films based on their single-crystalline precursors by a modified hot-casting method, which makes it easier to obtain uniformly oriented thin films to help improve the photovoltaic performance and reproducibility. And solar cells fabricated based on these thin films exhibited a power conversion efficiency (PCE) of 5.05% (n = 3) and 9.03% (n = 4), and demonstrated good feasibility and stability. These attractive results may provide an understanding for further studies of the optoelectronic device applications of these layered perovskite materials.

Graphical abstract: Layered hybrid perovskite solar cells based on single-crystalline precursor solutions with superior reproducibility

Supplementary files

Article information

Article type
Paper
Submitted
09 May 2018
Accepted
14 Jul 2018
First published
19 Jul 2018

Sustainable Energy Fuels, 2018,2, 2237-2243

Layered hybrid perovskite solar cells based on single-crystalline precursor solutions with superior reproducibility

Y. Dang, J. Wei, X. Liu, X. Wang, K. Xu, M. Lei, W. Hu and X. Tao, Sustainable Energy Fuels, 2018, 2, 2237 DOI: 10.1039/C8SE00213D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements