Skip to main content
Log in

UV-B exposure reduces the activity of several cell wall-dismantling enzymes and affects the expression of their biosynthetic genes in peach fruit (Prunus persica L., cv. Fairtime, melting phenotype)

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Softening processes after ripening are a major factor contributing to the perishability of fleshy fruit and, together with mechanical damage, represent the onset of physiological decay. Softening involves multiple co-ordinated events leading to modifications of the cell wall architecture. Several studies described that UV-B radiation positively affects both the nutraceutical and aesthetical qualities of fruit. However, very few studies investigated the effect of UV-B irradiation on the activity of cell wall-related enzymes. This research aimed at studying how different UV-B treatments (10 min and 60 min) affect the activity of cell wall-modifying enzymes (pectin methylesterase, polygalacturonase and β-galactosidase) together with the expression of some of their isoforms up to 36 h after UV-B treatment of peach (cv. Fairtime, melting phenotype) fruit. Results revealed that UV-B radiation did not affect the soluble solid content and the titratable acidity, two important parameters influencing consumers’ choice and taste. In contrast, UV-B was effective at reducing the loss of firmness 24 h after the 60 min irradiation. Generally, a lower activity of the hydrolytic enzymes compared to untreated fruit was observed, regardless of the UV-B dose. However, gene expression did not reflect the corresponding enzymatic activity. Based on these results, UV-B irradiation might be a successful tool in reducing the loss of firmness of peach fruit during post-harvest, thus improving their quality and shelf-life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. J. Pinela and I. C. F. R. Ferreira, Nonthermal physical technologies to decontaminate and extend the shelf-life of fruit and vegetables: Trends aiming at quality and safety, Crit. Rev. Food Sci. Nutr., 2017, 57, 2095–2111.

    Article  CAS  PubMed  Google Scholar 

  2. G. Romanazzi, E. Feliziani, S. B. Baños and D. Sivakumar, Shelf life extension of fresh fruit and vegetables by chitosan treatment, Crit. Rev. Food Sci. Nutr., 2017, 57, 579–601.

    Article  CAS  PubMed  Google Scholar 

  3. A. Martínez-Sánchez, J. A. Tudela, C. Luna, A. Allende and M. I. Gil, Low oxygen levels and light exposure affect quality of fresh-cut Romaine lettuce, Postharvest Biol. Technol., 2011, 59, 34–42.

    Article  CAS  Google Scholar 

  4. H. M. Lung, Y. C. Cheng, Y. H. Chang, H. W. Huang, B. B. Yang and C. Y. Wang, Microbial decontamination of food by electron beam irradiation, Trends Food Sci. Technol., 2015, 44, 66–78.

    Article  CAS  Google Scholar 

  5. M. S. Aday, R. Temizkan, M. B. Büyükcan and C. Caner, An innovative technique for extending shelf life of strawberry: Ultrasound, LWTFood Sci. Technol., 2013, 52, 93–101.

    Article  CAS  Google Scholar 

  6. L. Zhou, X. Bi, Z. Xu, Y. Yang and X. Liao, Effects of High-Pressure CO2Processing on Flavor, Texture, and Color of Foods, Crit. Rev. Food Sci. Nutr., 2015, 55, 750–768.

    Article  CAS  PubMed  Google Scholar 

  7. K. W. Kim, Y. T. Kim, M. Kim, B. S. Noh and W. S. Choi, Effect of high hydrostatic pressure (HHP) treatment on flavor, physicochemical properties and biological functionalities of garlic, LWTFood Sci. Technol., 2014, 55, 347–354.

    Article  CAS  Google Scholar 

  8. V. Briones-Labarca, G. Venegas-Cubillos, S. Ortiz-Portilla, M. Chacana-Ojeda and H. Maureira, Effects of high hydrostatic pressure (HHP) on bioaccessibility, as well as antioxidant activity, mineral and starch contents in Granny Smith apple, Food Chem., 2011, 128, 520–529.

    Article  CAS  PubMed  Google Scholar 

  9. A. R. Vicente, M. Saladié, J. K. Rose and J. M. Labavitch, The linkage between cell wall metabolism and fruit softening: looking to the future, J. Sci. Food Agric., 2007, 87, 1435–1448.

    Article  CAS  Google Scholar 

  10. J. Pelloux, C. Rustérucci and E. J. Mellerowicz, New insights into pectin methylesterase structure and function, Trends Plant Sci., 2007, 12, 267–277.

    Article  CAS  PubMed  Google Scholar 

  11. F. Sénéchal, C. Wattier, C. Rustérucci and J. Pelloux, Homogalacturonan-modifying enzymes: Structure, expression, and roles in plants, J. Exp. Bot., 2014, 65, 5125–5160.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. A. M. Moustacas, J. Nari, M. Borel, G. Noat and J. Ricard, Pectin methylesterase, metal ions and plant cell-wall extension. The role of metal ions in plant cell-wall extension, Biochem. J., 1991, 279, 351–354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. J. Wei, F. Ma, S. Shi, X. Qi, X. Zhu and J. Yuan, Changes and postharvest regulation of activity and gene expression of enzymes related to cell wall degradation in ripening apple fruit, Postharvest Biol. Technol., 2010, 56, 147–154.

    Article  CAS  Google Scholar 

  14. D. A. Brummell and M. H. Harpster, Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants, Plant Mol. Biol., 2001, 47, 311–340.

    Article  CAS  PubMed  Google Scholar 

  15. D. L. Smith, J. A. Abbott and K. C. Gross, Down-Regulation of Tomato 13-Galactosidase 4 Results in Decreased Fruit Softening1, Plant Physiol., 2014, 129, 1755–1762.

    Article  CAS  Google Scholar 

  16. M. H. Asif, P. Nath, R. Othman, H. L. Chong, T. S. Choo and Z. M. Ali, Three β-galactosidase cDNA clones related to fruit ripening in papaya (Carica papaya), Plant Physiol. Biochem., 2011, 33, 177–184.

    Google Scholar 

  17. S. Ogasawara, K. Abe and T. Nakajima, Pepper beta-galactosidase 1 (PBG1) plays a significant role in fruit ripening in bell pepper (Capsicum annuum)., Biosci., Biotechnol., Biochem., 2007, 71, 309–322.

    Article  CAS  Google Scholar 

  18. C. Paniagua, R. Blanco-Portales, M. Barceló-Muñoz, J. A. García-Gago, K. W. Waldron, M. A. Quesada, J. Muñoz-Blanco and J. A. Mercado, Antisense down-regulation of the strawberry β-galactosidase gene FaβGal4 increases cell wall galactose levels and reduces fruit softening, J. Exp. Bot., 2016, 67, 619–631.

    Article  CAS  PubMed  Google Scholar 

  19. L. Trainotti, D. Zanin and G. Casadoro, A cell wall-oriented genomic approach reveals a new and unexpected complexity of the softening in peaches, J. Exp. Bot., 2003, 54, 1821–1832.

    Article  CAS  PubMed  Google Scholar 

  20. S. Morgutti, N. Negrini, F. F. Nocito, A. Ghiani, D. Bassi and M. Cocucci, Changes in endopolygalacturonase levels and characterization of a putative endo-PG gene during fruit softening in peach genotypes with nonmelting and melting flesh fruit phenotypes, New Phytol., 2006, 171, 315–328.

    Article  CAS  PubMed  Google Scholar 

  21. R. Pressey and J. K. Avants, Difference in polygalacturonase composition of clingstone and freestone peaches, J. Food Sci., 1978, 43, 1415–1417.

    Article  CAS  Google Scholar 

  22. A. Ghiani, N. Negrini, S. Morgutti, F. Baldin, F. F. Nocito, A. Spinardi, I. Mignani, D. Bassi and M. Cocucci, Melting of ‘Big Top’ nectarine fruit: Some physiological, biochemical, and molecular aspects, J. Am. Soc. Hortic. Sci., 2011, 136, 61–68.

    Article  CAS  Google Scholar 

  23. P. Vizoso, L. A. Meisel, A. Tittarelli, M. Latorre, J. Saba, R. Caroca, J. Maldonado, V. Cambiazo, R. Campos-Vargas, M. Gonzalez, A. Orellana and H. Silva, Comparative EST transcript profiling of peach fruit under different post-harvest conditions reveals candidate genes associated with peach fruit quality, BMC Genomics, 2009, 10, 423.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. B. Belge, L. F. Goulao, E. Comabella, J. Graell and I. Lara, Refrigerated storage and calcium dips of ripe ‘Celeste’ sweet cherry fruit: Combined effects on cell wall metabolism, Sci. Hortic., 2017, 219, 182–190.

    Article  CAS  Google Scholar 

  25. A. Spadoni, M. Guidarelli, S. M. Sanzani, A. Ippolito and M. Mari, Influence of hot water treatment on brown rot of peach and rapid fruit response to heat stress, Postharvest Biol. Technol., 2014, 94, 66–73.

    Article  CAS  Google Scholar 

  26. G. O. Sozzi, O. Cascone and A. A. Fraschina, Effect of a high-temperature stress on endo-β-mannanase and α- and β- galactosidase activities during tomato fruit ripening, Postharvest Biol. Technol., 1996, 9, 49–63.

    Article  CAS  Google Scholar 

  27. H. Murayama, M. Arikawa, Y. Sasaki, V. Dal Cin, W. Mitsuhashi and T. Toyomasu, Effect of ethylene treatment on expression of polyuronide-modifying genes and solubilization of polyuronides during ripening in two peach cultivars having different softening characteristics, Postharvest Biol. Technol., 2009, 52, 196–201.

    Article  CAS  Google Scholar 

  28. M. Santin, L. Lucini, A. Castagna, G. Chiodelli, M. Hauser and A. Ranieri, Post-harvest UV-B radiation modulates metabolite profile in peach fruit, Postharvest Biol. Technol., 2018, 139, 127–134.

    Article  CAS  Google Scholar 

  29. C. Scattino, A. Castagna, S. Neugart, H. M. Chan, M. Schreiner, C. H. Crisosto, P. Tonutti and A. Ranieri, Post-harvest UV-B irradiation induces changes of phenol contents and corresponding biosynthetic gene expression in peaches and nectarines, Food Chem., 2014, 163, 51–60.

    Article  CAS  PubMed  Google Scholar 

  30. C. F. Assumpção, V. S. Hermes, C. Pagno, A. Castagna, A. Mannucci, C. Sgherri, C. Pinzino, A. Ranieri, S. H. Flôres and A. de O. Rios, Phenolic enrichment in apple skin following post-harvest fruit UV-B treatment, Postharvest Biol. Technol., 2018, 138, 37–45.

    Article  CAS  Google Scholar 

  31. J. Bu, Y. Yu, G. Aisikaer and T. Ying, Postharvest UV-C irradiation inhibits the production of ethylene and the activity of cell wall-degrading enzymes during softening of tomato (Lycopersicon esculentum L.) fruit, Postharvest Biol. Technol., 2013, 86, 377–345.

    Article  CAS  Google Scholar 

  32. E. Ait Barka, S. Kalantari, J. Makhlouf and J. Arul, Impact of UV-C irradiation on the cell wall-degrading enzymes during ripening of tomato (Lycopersicon esculentum L.) fruit, J. Agric. Food Chem., 2000, 48, 667–671.

    Article  CAS  Google Scholar 

  33. C. Scattino, N. Negrini, S. Morgutti, M. Cocucci, C. H. Crisosto, P. Tonutti, A. Castagna and A. Ranieri, Cell wall metabolism of peaches and nectarines treated with UV-B radiation: a biochemical and molecular approach, J. Sci. Food Agric., 2015, 96, 939–947.

    Article  PubMed  CAS  Google Scholar 

  34. D. Garner, C. H. Crisosto, P. Wiley and G. M. Crisosto, Measurement of pH and Titratable Acidity, in Establishing A Quality Control System, ed. C. H. Crisosto, Pomology Department, Uc Davis Kearney Agricultural Center, Parlier, Ca, 2001.

  35. J. Richter, M. Ploderer, G. Mongelard, L. Gutierrez and M.-T. Hauser, Role of CrRLK1L Cell Wall Sensors HERCULES1 and 2, THESEUS1, and FERONIA in Growth Adaptation Triggered by Heavy Metals and Trace Elements, Front. Plant Sci., 2017, 8, 1–12.

    Article  Google Scholar 

  36. I. Rieu and S. J. Powers, Real-Time Quantitative RT-PCR: Design, Calculations, and Statistics, Plant Cell, 2009, 21, 1031–1033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. G. A. Manganaris, A. R. Vicente, C. H. Crisosto and J. M. Labavitch, Cell wall modifications in chilling-injured plum fruit (Prunus salicina), Postharvest Biol. Technol., 2008, 48, 77–83.

    Article  CAS  Google Scholar 

  38. A. E. Hagerman and P. J. Austin, Continuous Spectrophotometric Assay for Plant Pectin Methyl Esterase, J. Agric. Food Chem., 1986, 34, 440–444.

    Article  CAS  Google Scholar 

  39. K. C. Gross, A rapid and sensitive spectrophotometric method for assaying polygalacturonase using 2-cyanoacetamide, HortScience, 1982, 17, 933–934.

    CAS  Google Scholar 

  40. C. H. Crisosto and G. M. Crisosto, Relationship between ripe soluble solids concentration (RSSC) and consumer acceptance of high and low acid melting flesh peach and nectarine (Prunus persica (L.) Batsch) cultivars, Postharvest Biol. Technol., 2005, 38, 239–246.

    Article  CAS  Google Scholar 

  41. C. H. Crisosto, G. M. Crisosto, G. Echeverria and J. Puy, Segregation of peach and nectarine (Prunus persica (L.) Batsch) cultivars according to their organoleptic characteristics, Postharvest Biol. Technol., 2006, 39, 10–18.

    Article  Google Scholar 

  42. C. Crisosto, D. Slaughter, D. Garner and J. Boyd, J. Am. Pomol. Soc., 2001, 55, 76–81.

    Google Scholar 

  43. C. H. Crisosto, How do we increase peach consumption?, Acta Hortic., 2002, 592, 601–605.

    Article  Google Scholar 

  44. C. Liu, X. Han, L. Cai, X. Lu, T. Ying and Z. Jiang, Postharvest UV-B irradiation maintains sensory qualities and enhances antioxidant capacity in tomato fruit during storage, Postharvest Biol. Technol., 2011, 59, 232–237.

    Article  CAS  Google Scholar 

  45. M. A. Pombo, M. C. Dotto, G. A. Martínez and P. M. Civello, UV-C irradiation delays strawberry fruit softening and modifies the expression of genes involved in cell wall degradation, Postharvest Biol. Technol., 2009, 51, 141–148.

    Article  CAS  Google Scholar 

  46. L. C. Ortiz Araque, L. M. Rodoni, M. Darré, C. M. Ortiz, P. M. Civello and A. R. Vicente, Cyclic low dose UV-C treatments retain strawberry fruit quality more effectively than conventional pre-storage single high fluence applications, LWTFood Sci. Technol., 2018, 92, 304–311.

    Article  CAS  Google Scholar 

  47. M. A. Obande, G. A. Tucker and G. Shama, Effect of pre-harvest UV-C treatment of tomatoes (Solanum lycopersicon Mill.) on ripening and pathogen resistance, Postharvest Biol. Technol., 2011, 62, 188–192.

    Article  CAS  Google Scholar 

  48. C. Ou, Y. Liu, W. Wang and D. Dong, Integration of UV-C with antagonistic yeast treatment for controlling post-harvest disease and maintaining fruit quality of Ananas comosus, BioControl, 2016, 61, 591–603.

    Article  CAS  Google Scholar 

  49. S. Hemmaty, N. Moallemi and L. Naseri, Effect of UV-C radiation and hot water on the calcium content and post-harvest quality of apples, Span. J. Agric. Res., 2007, 5, 559–568.

    Article  Google Scholar 

  50. Official Journal of the European Union, Commission Regulation (EC) No 1861/2004 of 28 October 2004 laying down the marketing standard applicable to peaches and nectarines, 2004, 2003, 10–16.

  51. D. Wang, T. H. Yeats, S. Uluisik, J. K. C. Rose and G. B. Seymour, Fruit Softening: Revisiting the Role of Pectin, Trends Plant Sci., 2018, 23, 302–310.

    Article  CAS  PubMed  Google Scholar 

  52. H. Zhang, S. Yang, D. C. Joyce, Y. Jiang, H. Qu and X. Duan, Physiology and quality response of harvested banana fruit to cold shock, Postharvest Biol. Technol., 2010, 55, 154–159.

    Article  CAS  Google Scholar 

  53. M. Chisari, R. N. Barbagallo, G. Spagna and F. Artes, Improving the quality of fresh-cut melon through inactivation of degradative oxidase and pectinase enzymatic activities by UV-C treatment, Int. J. Food Sci. Technol., 2011, 46, 463–468.

    Article  CAS  Google Scholar 

  54. A. Wormit and B. Usadel, The multifaceted role of pectin methylesterase inhibitors (PMEIs), Int. J. Mol. Sci., 2018, 19, 1–19.

    Article  CAS  Google Scholar 

  55. A. Tateishi, H. Shiba, J. Ogihara, K. Isobe, K. Nomura, K. Watanabe and H. Inoue, Differential expression and ethylene regulation of β-galactosidase genes and isozymes isolated from avocado (Persea americana Mill.) fruit, Postharvest Biol. Technol., 2007, 45, 56–65.

    Article  CAS  Google Scholar 

  56. A. Tateishi, H. Inoue, H. Shiba and S. Yamaki, Molecular cloning of β-galactosidase from Japanese pear (Pyrus pyrifolia) and its gene expression with fruit ripening, Plant Cell Physiol., 2001, 42, 492–498.

    Article  CAS  PubMed  Google Scholar 

  57. H. G. Chidley, A. B. Deshpande, P. S. Oak, K. H. Pujari, A. P. Giri and V. S. Gupta, Effect of postharvest ethylene treatment on sugar content, glycosidase activity and its gene expression in mango fruit, J. Sci. Food Agric., 2017, 97, 1624–1633.

    Article  CAS  PubMed  Google Scholar 

  58. M. H. Asif and P. Nath, Expression of multiple forms of polygalacturonase gene during ripening in banana fruit, Plant Physiol. Biochem., 2005, 43, 177–184.

    Article  CAS  PubMed  Google Scholar 

  59. D. L. Smith and K. C. Gross, A family of at least seven betagalactosidase genes is expressed during tomato fruit development, Plant Physiol., 2000, 123, 1173–1183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. L. Trainotti, R. Spinello, A. Piovan, S. Spolaore and G. Casadoro, β-Galactosidases with a lectin-like domain are expressed in strawberry, J. Exp. Bot., 2001, 52, 1635–1645.

    CAS  PubMed  Google Scholar 

  61. J. Wei, X. Qi, Y. Cheng and J. Guan, Difference in activity and gene expression of pectin-degrading enzymes during softening process in two cultivars of Chinese pear fruit, Sci. Hortic., 2015, 197, 434–440.

    Article  CAS  Google Scholar 

  62. M. W. Mwaniki, F. M. Mathooko, M. Matsuzaki, K. Hiwasa, A. Tateishi, K. Ushijima, R. Nakano, A. Inaba and Y. Kubo, Expression characteristics of seven members of the β-galactosidase gene family in ‘La France’ pear (Pyrus communis L.) fruit during growth and their regulation by 1-methylcyclopropene during postharvest ripening, Postharvest Biol. Technol., 2005, 36, 253–263.

    Article  CAS  Google Scholar 

  63. N. M. Villarreal, H. G. Rosli, G. A. Martínez and P. M. Civello, Polygalacturonase activity and expression of related genes during ripening of strawberry cultivars with contrasting fruit firmness, Postharvest Biol. Technol., 2008, 47, 141–150.

    Article  CAS  Google Scholar 

  64. L. F. Goulao, J. Santos, I. de Sousa and C. M. Oliveira, Patterns of enzymatic activity of cell wall-modifying enzymes during growth and ripening of apples, Postharvest Biol. Technol., 2007, 43, 307–318.

    Article  CAS  Google Scholar 

  65. X. Wang, X. Fu, M. Chen, L. Huan, W. Liu, Y. Qi, Y. Gao, W. Xiao, X. Chen, L. Li and D. Gao, Ultraviolet B irradiation influences the fruit quality and sucrose metabolism of peach (Prunus persica L.), Environ. Exp. Bot., 2018, 153, 286–301.

    Article  CAS  Google Scholar 

  66. H. Wang, M. Gui, X. Tian, X. Xin, T. Wang and J. Li, Effects of UV-B on vitamin C, phenolics, flavonoids and their related enzyme activities in mung bean sprouts (Vigna radiata), Int. J. Food Sci. Technol., 2017, 52, 827–833.

    Article  CAS  Google Scholar 

  67. J. Cai, G. Qin, T. Chen and S. Tian, The mode of action of remorin1 in regulating fruit ripening at transcriptional and post-transcriptional levels, New Phytol., 2018, 219, 1406–1420.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Santin.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c8pp00505b

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santin, M., Giordani, T., Cavallini, A. et al. UV-B exposure reduces the activity of several cell wall-dismantling enzymes and affects the expression of their biosynthetic genes in peach fruit (Prunus persica L., cv. Fairtime, melting phenotype). Photochem Photobiol Sci 18, 1280–1289 (2019). https://doi.org/10.1039/c8pp00505b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00505b

Navigation