Skip to main content
Log in

Melanoma–role of the environment and genetics

  • PERSPECTIVE
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Melanoma rates have increased in populations that are mainly European. The main etiologic factor is ultraviolet radiation, from the sun as well as artificial tanning devices. Host factors such as skin color, number of nevi, hair and eye color and tanning ability are critical factors in modifying an individual’s response to the sun. Genetic factors interact with host factors and environmental factors to increase risk. This review summarizes our current knowledge of environment and genetics on melanoma risk and on gene-environment interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. C. Whiteman, A. C. Green and C. M. Olsen, The Growing Burden of Invasive Melanoma: Projections of Incidence Rates and Numbers of New Cases in Six Susceptible Populations through 2031, J. Invest. Dermatol., 2016, 136(6), 1161–1171.

    Article  CAS  PubMed  Google Scholar 

  2. C. Fitzmaurice, Burden of cancer in the Eastern Mediterranean Region, 2005-2015: findings from the Global Burden of Disease 2015 Study, Int. J. Public Health, 2018, 63, 151–164.

    Article  Google Scholar 

  3. J. Ferlay, E. Steliarova-Foucher, J. Lortet-Tieulent, S. Rosso, J. W. Coebergh, H. Comber, {etet al.}, Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012, Eur.J. Cancer, 2013, 49(6), 1374–1403.

    Article  CAS  PubMed  Google Scholar 

  4. IARC, Solar and Ultraviolet Radiation, 2012, vol. 100D, pp. 35–101.

    Google Scholar 

  5. Cancer, IAfRoP, IARC monographs on the evaluation of carcinogenic risks to humans: solar and ultraviolet radiation, IARC Monogr. Eval. Carcinog. Risks Hum., 1992, 55, 1–316.

  6. F. El Ghissassi, R. Baan, K. Straif, Y. Grosse, B. Secretan, V. Bouvard, {etet al.}, A review of human carcinogens-part D: radiation, Lancet Oncol., 2009, 10(8), 751–752.

    Article  PubMed  Google Scholar 

  7. R. W. Gange and C. F. Rosen, UVA effects on mammalian skin and cells, Photochem. Photobiol., 1986, 43(6), 701–705.

    Article  CAS  PubMed  Google Scholar 

  8. F. P. Gasparro, Sunscreens, skin photobiology, and skin cancer: the need for UVA protection and evaluation of efficacy, Environ. Health Perspect., 2000, 108(Suppl 1), 71–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. A. R. Young, C. S. Potten, O. Nikaido, P. G. Parsons, J. Boenders, J. M. Ramsden, {etet al.}, Human melanocytes and keratinocytes exposed to UVB or UVA in vivo show comparable levels of thymine dimers, J. Invest. Dermatol., 1998, 111(6), 936–940.

    Article  CAS  PubMed  Google Scholar 

  10. A. Besaratinia and G. P. Pfeifer, Measuring the formation and repair of UV damage at the DNA sequence level by ligation-mediated PCR, Methods Mol. Biol., 2012, 920, 189–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. A. Q. Khan, J. B. Travers and M. G. Kemp, Roles of UVA radiation and DNA damage responses in melanoma pathogenesis, Environ. Mol. Mutagen., 2018, 59, 438–460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. J. Moan, A. Dahlback and R. B. Setlow, Epidemiological support for an hypothesis for melanoma induction indicating a role for UVA radiation, Photochem. Photobiol., 1999, 70(2), 243–247.

    Article  CAS  PubMed  Google Scholar 

  13. S. R. Wood, M. Berwick, R. D. Ley, R. B. Walter, R. B. Setlow and G. S. Timmins, UV causation of melanoma in Xiphophorus is dominated by melanin photosensitized oxidant production, Proc. Natl. Acad. Sci. U. S. A., 2006, 103(11), 4111–4115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. S. E. Ullrich and S. N. Byrne, The immunologic revolution: photoimmunology, J. Invest. Dermatol., 2012, 132(3 Pt 2), 896–905.

    Article  CAS  PubMed  Google Scholar 

  15. J. M. Elwood and J. Jopson, Melanoma and sun exposure: an overview of published studies, Int. J. Cancer, 1997, 73(2), 198–203.

    Article  CAS  PubMed  Google Scholar 

  16. P. J. Nelemans, F. H. Rampen, D. J. Ruiter and A. L. Verbeek, An addition to the controversy on sunlight exposure and melanoma risk: a meta-analytical approach, J. Clin. Epidemiol., 1995, 48(11), 1331–1342.

    Article  CAS  PubMed  Google Scholar 

  17. S. Gandini, F. Sera, M. S. Cattaruzza, P. Pasquini, O. Picconi, P. Boyle, {etet al.}, Meta-analysis of risk factors for cutaneous melanoma: II. Sun exposure, Eur. J. Cancer, 2005, 41(1), 45–60.

    Article  PubMed  Google Scholar 

  18. S. Gandini, F. Sera, M. S. Cattaruzza, P. Pasquini, R. Zanetti, C. Masini, {etet al.}, Meta-analysis of risk factors for cutaneous melanoma: III. Family history, actinic damage and phenotypic factors, Eur. J. Cancer, 2005, 41(14), 2040–2059.

    Article  PubMed  Google Scholar 

  19. Y. M. Chang, J. H. Barrett, D. T. Bishop, B. K. Armstrong, V. Bataille, W. Bergman, {etet al.}, Sun exposure and melanoma risk at different latitudes: a pooled analysis of 5700 cases and 7216 controls, Int. J. Epidemiol., 2009, 38(3), 814–830.

    Article  PubMed  PubMed Central  Google Scholar 

  20. F. R. de Gruijl, UV adaptation: Pigmentation and protection against overexposure, Exp. Dermatol., 2017, 26(7), 557–562.

    Article  PubMed  CAS  Google Scholar 

  21. B. A. Gilchrest, M. S. Eller, A. C. Geller and M. Yaar, The pathogenesis of melanoma induced by ultraviolet radiation, N. Engl. J. Med., 1999, 340(17), 1341–1348.

    Article  CAS  PubMed  Google Scholar 

  22. P. Shih, L. G. Pedersen, P. R. Gibbs and R. Wolfenden, Hydrophobicities of the nucleic acid bases: distribution coefficients from water to cyclohexane, J. Mol. Biol., 1998, 280(3), 421–430.

    Article  CAS  PubMed  Google Scholar 

  23. J. M. Sheehan, N. Cragg, C. A. Chadwick, C. S. Potten and A. R. Young, Repeated ultraviolet exposure affords the same protection against DNA photodamage and erythema in human skin types II and IV but is associated with faster DNA repair in skin type IV, J. Invest. Dermatol., 2002, 118(5), 825–829.

    Article  CAS  PubMed  Google Scholar 

  24. H. Levine, A. Afek, A. Shamiss, E. Derazne, D. Tzur, N. Astman, {etet al.}, Country of origin, age at migration and risk of cutaneous melanoma: a migrant cohort study of 1,100,000 Israeli men, Int. J. Cancer, 2013, 133(2), 486–494.

    Article  CAS  PubMed  Google Scholar 

  25. M. Khlat, A. Vail, M. Parkin and A. Green, Mortality from melanoma in migrants to Australia: variation by age at arrival and duration of stay, Am. J. Epidemiol., 1992, 135(10), 1103–1113.

    Article  CAS  PubMed  Google Scholar 

  26. M. Berwick, A. S. Reiner, S. Paine, B. K. Armstrong, A. Kricker, C. Goumas, {etet al.}, Sun exposure and melanoma survival: a GEM study, Cancer Epidemiol., Biomarkers Prev., 2014, 23(10), 2145–2152.

    Article  CAS  Google Scholar 

  27. A. Kricker, B. K. Armstrong, C. Goumas, M. Litchfield, C. B. Begg, A. J. Hummer, {etet al.}, Ambient UV, personal sun exposure and risk of multiple primary melanomas, Cancer Causes Control, 2007, 18(3), 295–304.

    Article  PubMed  PubMed Central  Google Scholar 

  28. V. McGovern, Melanoblastoma, Med. J. Aust., 1952, 1(5), 139–142.

    Article  CAS  PubMed  Google Scholar 

  29. T. R. Fears, J. Scotto and M. A. Schneiderman, Mathematical models of age and ultraviolet effects on the incidence of skin cancer among whites in the United States, Am. J. Epidemiol., 1977, 105(5), 420–427.

    Article  CAS  PubMed  Google Scholar 

  30. C. D. Holman, B. K. Armstrong and P. J. Heenan, A theory of the etiology and pathogenesis of human cutaneous malignant melanoma, J. Natl. Cancer Inst., 1983, 71(4), 651–656.

    CAS  PubMed  Google Scholar 

  31. D. C. Whiteman, P. Watt, D. M. Purdie, M. C. Hughes, N. K. Hayward and A. C. Green, Melanocytic nevi, solar keratoses, and divergent pathways to cutaneous melanoma, J. Natl. Cancer Inst., 2003, 95(11), 806–812.

    Article  PubMed  Google Scholar 

  32. A. H. Shain, I. Yeh, I. Kovalyshyn, A. Sriharan, E. Talevich, A. Gagnon, {etet al.}, The Genetic Evolution of Melanoma from Precursor Lesions, N. Engl. J. Med., 2015, 373(20), 1926–1936.

    Article  PubMed  CAS  Google Scholar 

  33. C. G. A. Network, Genomic Classification of Cutaneous Melanoma, Cell, 2015, 161(7), 1681–1696.

    Article  CAS  Google Scholar 

  34. I. Martincorena, A. Roshan, M. Gerstung, P. Ellis, P. Van Loo, S. McLaren, {etet al.}, Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin, Science, 2015, 348(6237), 880–886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. S. Y. Kim, S. N. Kim, H. J. Hahn, Y. W. Lee, Y. B. Choe and K. J. Ahn, Metaanalysis of BRAF mutations and clinicopathologic characteristics in primary melanoma, J. Am. Acad. Dermatol., 2015, 72(6), 1036–1046.

    Article  CAS  PubMed  Google Scholar 

  36. E. Hacker, C. M. Olsen, M. Kvaskoff, N. Pandeya, A. Yeo, A. C. Green, {etet al.}, Histologic and Phenotypic Factors and MC1R Status Associated with BRAF(V600E), BRAF (V600 K), and NRAS Mutations in a Community-Based Sample of 414 Cutaneous Melanomas, J. Invest. Dermatol., 2016, 136(4), 829–837.

    Article  CAS  PubMed  Google Scholar 

  37. N. E. Thomas, S. N. Edmiston, A. Alexander, P. A. Groben, E. Parrish, A. Kricker, {etet al.}, Association Between NRAS and BRAF Mutational Status and Melanoma-Specific Survival Among Patients With Higher-Risk Primary Melanoma, JAMA Oncol., 2015, 1(3), 359–368.

    Article  PubMed  PubMed Central  Google Scholar 

  38. K. G. Griewank, R. Murali, J. A. Puig-Butille, B. Schilling, E. Livingstone, M. Potrony, {etet al.}, TERT promoter mutation status as an independent prognostic factor in cutaneous melanoma, J. Natl. Cancer Inst., 2014, 106(9), DOI: 10.1093/jnci/dju246.

    Google Scholar 

  39. M. R. Wehner, M. M. Chren, D. Nameth, A. Choudhry, M. Gaskins, K. T. Nead, {etet al.}, International prevalence of indoor tanning: a systematic review and meta-analysis, JAMA Dermatol., 2014, 150(4), 390–400.

    Article  PubMed  PubMed Central  Google Scholar 

  40. S. Colantonio, M. B. Bracken and J. Beecker, The association of indoor tanning and melanoma in adults: systematic review and meta-analysis, J. Am. Acad. Dermatol., 2014, 70(5), 847–857.

    Article  PubMed  Google Scholar 

  41. M. Boniol, P. Autier, P. Boyle and S. Gandini, Cutaneous melanoma attributable to sunbed use: systematic review and meta-analysis, BMJ, 2012, 345, e4757.

    Article  PubMed  PubMed Central  Google Scholar 

  42. A. E. Cust, M. A. Jenkins, C. Goumas, B. K. Armstrong, H. Schmid, J. F. Aitken, {etet al.}, Early-life sun exposure and risk of melanoma before age 40 years, Cancer Causes Control, 2011, 22(6), 885–897.

    Article  PubMed  Google Scholar 

  43. D. Lazovich, R. Isaksson Vogel, M. A. Weinstock, H. H. Nelson, R. L. Ahmed and M. Berwick, Association Between Indoor Tanning and Melanoma in Younger Men and Women, JAMA Dermatol., 2016, 152(3), 268–275.

    Article  PubMed  PubMed Central  Google Scholar 

  44. C. A. Sinclair, J. K. Makin, A. Tang, I. Brozek and V. Rock, The role of public health advocacy in achieving an outright ban on commercial tanning beds in Australia, Am. J. Public Health, 2014, 104(2), e7–e9.

    Article  PubMed  PubMed Central  Google Scholar 

  45. M. Kvaskoff, N. Pandeya, A. C. Green, S. Perry, C. Baxter, M. B. Davis, {etet al.}, Solar elastosis and cutaneous melanoma: a site-specific analysis, Int. J. Cancer, 2015, 136(12), 2900–2911.

    Article  CAS  PubMed  Google Scholar 

  46. V. Bataille, Genetics of familial and sporadic melanoma, Clin. Exp. Dermatol., 2000, 25(6), 464–470.

    Article  CAS  PubMed  Google Scholar 

  47. J. M. Satagopan, S. A. Oliveria, A. Arora, M. A. Marchetti, I. Orlow, S. W. Dusza, {etet al.}, Sunburn, sun exposure, and sun sensitivity in the Study of Nevi in Children, Ann. Epidemiol., 2015, 25(11), 839–843.

    Article  PubMed  PubMed Central  Google Scholar 

  48. S. L. Harrison, R. MacLennan, R. Speare and I. Wronski, Sun exposure and melanocytic naevi in young Australian children, Lancet, 1994, 344(8936), 1529–1532.

    Article  CAS  PubMed  Google Scholar 

  49. M. Dulon, M. Weichenthal, M. Blettner, M. Breitbart, M. Hetzer, R. Greinert, {etet al.}, Sun exposure and number of nevi in 5- to 6-year-old European children, J. Clin. Epidemiol., 2002, 55(11), 1075–1081.

    Article  PubMed  Google Scholar 

  50. C. M. Olsen, H. J. Carroll and D. C. Whiteman, Estimating the attributable fraction for cancer: A meta-analysis of nevi and melanoma, Cancer Prev. Res., 2010, 3(2), 233–245.

    Article  Google Scholar 

  51. C. Garbe, P. Buttner, J. Weiss, H. P. Soyer, U. Stocker, S. Kruger, {etet al.}, Risk factors for developing cutaneous melanoma and criteria for identifying persons at risk: multicenter case-control study of the Central Malignant Melanoma Registry of the German Dermatological Society, J. Invest. Dermatol., 1994, 102(5), 695–699.

    Article  CAS  PubMed  Google Scholar 

  52. R. Marks, Epidemiology of melanoma, Clin. Exp. Dermatol., 2000, 25(6), 459–463.

    Article  CAS  PubMed  Google Scholar 

  53. B. K. Armstrong and A. Kricker, The epidemiology of UV induced skin cancer, J. Photochem. Photobiol., B, 2001, 63(1-3), 8–18.

    Article  CAS  Google Scholar 

  54. M. A. Tucker and A. M. Goldstein, Melanoma etiology: where are we?, Oncogene, 2003, 22(20), 3042–3052.

    Article  CAS  PubMed  Google Scholar 

  55. V. Bataille and E. de Vries, Melanoma-Part 1: epidemiology, risk factors, and prevention, BMJ, 2008, 337, a2249.

    Article  PubMed  Google Scholar 

  56. D. Fajuyigbe and A. R. Young, The impact of skin colour on human photobiological responses, Pigm. Cell Melanoma Res., 2016, 29(6), 607–618.

    Article  CAS  Google Scholar 

  57. N. K. Hayward, Genetics of melanoma predisposition, Oncogene, 2003, 22(20), 3053–3062.

    Article  CAS  PubMed  Google Scholar 

  58. C. M. Olsen, H. J. Carroll and D. C. Whiteman, Familial melanoma: a meta-analysis and estimates of attributable fraction, Cancer Epidemiol. Biomarkers Prev., 2010, 19(1), 65–73.

    Article  PubMed  Google Scholar 

  59. K. Hemminki, H. Zhang and K. Czene, Familial and attributable risks in cutaneous melanoma: effects of proband and age, J. Invest. Dermatol., 2003, 120(2), 217–223.

    Article  CAS  PubMed  Google Scholar 

  60. C. B. Begg, A. Hummer, U. Mujumdar, B. K. Armstrong, A. Kricker, L. D. Marrett, {etet al.}, Familial aggregation of melanoma risks in a large population-based sample of melanoma cases, Cancer Causes Control, 2004, 15(9), 957–965.

    Article  PubMed  Google Scholar 

  61. A. Kamb, D. Shattuck-Eidens, R. Eeles, Q. Liu, N. A. Gruis, W. Ding, {etet al.}, Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus, Nat. Genet., 1994, 8(1), 23–26.

    Article  CAS  PubMed  Google Scholar 

  62. M. Harland, A. E. Cust, C. Badenas, Y. M. Chang, E. A. Holland, P. Aguilera, {etet al.}, Prevalence and predictors of germline CDKN2A mutations for melanoma cases from Australia, Spain and the United Kingdom, Hered. Cancer Clin. Pract., 2014, 12(1), 20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. A. E. Cust, M. Harland, E. Makalic, D. Schmidt, J. G. Dowty, J. F. Aitken, {etet al.}, Melanoma risk for CDKN2A mutation carriers who are relatives of population-based case carriers in Australia and the UK, J. Med. Genet., 2011, 48(4), 266–272.

    Article  CAS  PubMed  Google Scholar 

  64. D. T. Bishop, F. Demenais, A. M. Goldstein, W. Bergman, J. N. Bishop, B. Bressac-de Paillerets, {etet al.}, Geographical variation in the penetrance of CDKN2A mutations for melanoma, J. Natl. Cancer Inst., 2002, 94(12), 894–903.

    Article  CAS  PubMed  Google Scholar 

  65. L. G. Aoude, M. Gartside, P. Johansson, J. M. Palmer, J. Symmons, N. G. Martin, {etet al.}, Prevalence of Germline BAP1, CDKN2A, and CDK4 Mutations in an Australian Population-Based Sample of Cutaneous Melanoma Cases, Twin Res. Hum. Genet., 2015, 18(2), 126–133.

    Article  PubMed  Google Scholar 

  66. M. Cheung, J. Talarchek, K. Schindeler, E. Saraiva, L. S. Penney, M. Ludman, {etet al.}, Further evidence for germline BAP1 mutations predisposing to melanoma and malignant mesothelioma, Cancer Genet., 2013, 206(5), 206–210.

    Article  CAS  PubMed  Google Scholar 

  67. K. G. Griewank, R. A. Scolyer, J. F. Thompson, K. T. Flaherty, D. Schadendorf and R. Murali, Genetic alterations and personalized medicine in melanoma: progress and future prospects, J. Natl. Cancer Inst., 2014, 106(2), djt435.

    Article  PubMed  Google Scholar 

  68. C. D. Robles-Espinoza, M. Harland, A. J. Ramsay, L. G. Aoude, V. Quesada, Z. Ding, {etet al.}, POT1 loss-of-function variants predispose to familial melanoma, Nat. Genet., 2014, 46(5), 478–481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. J. Shi, X. R. Yang, B. Ballew, M. Rotunno, D. Calista, M. C. Fargnoli, {etet al.}, Rare missense variants in POT1 predispose to familial cutaneous malignant melanoma, Nat. Genet., 2014, 46(5), 482–486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. S. Horn, A. Figl, P. S. Rachakonda, C. Fischer, A. Sucker, A. Gast, {etet al.}, TERT promoter mutations in familial and sporadic melanoma, Science, 2013, 339(6122), 959–961.

    Article  CAS  PubMed  Google Scholar 

  71. P. Valverde, E. Healy, S. Sikkink, F. Haldane, A. J. Thody, A. Carothers, {etet al.}, The Asp84Glu variant of the melanocortin 1 receptor (MC1R) is associated with melanoma, Hum. Mol. Genet., 1996, 5(10), 1663–1666.

    Article  CAS  PubMed  Google Scholar 

  72. A. E. Cust, C. Goumas, E. A. Holland, C. Agha-Hamilton, J. F. Aitken, B. K. Armstrong, {etet al.}, MC1R genotypes and risk of melanoma before age 40 years: a population-based case-control-family study, Int. J. Cancer, 2012, 131(3), E269–E281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. P. A. Kanetsky, S. Panossian, D. E. Elder, D. Guerry, M. E. Ming, L. Schuchter, {etet al.}, Does MC1R genotype convey information about melanoma risk beyond risk phenotypes?, Cancer, 2010, 116(10), 2416–2428.

    CAS  PubMed  Google Scholar 

  74. P. A. Kanetsky, T. R. Rebbeck, A. J. Hummer, S. Panossian, B. K. Armstrong, A. Kricker, {etet al.}, Population-based study of natural variation in the melanocortin-1 receptor gene and melanoma, Cancer Res., 2006, 66(18), 9330–9337.

    Article  CAS  PubMed  Google Scholar 

  75. P. F. Williams, C. M. Olsen, N. K. Hayward and D. C. Whiteman, Melanocortin 1 receptor and risk of cutaneous melanoma: a meta-analysis and estimates of population burden, Int. J. Cancer, 2011, 129(7), 1730–1740.

    Article  CAS  PubMed  Google Scholar 

  76. S. Yokoyama, S. L. Woods, G. M. Boyle, L. G. Aoude, S. MacGregor, V. Zismann, {etet al.}, A novel recurrent mutation in MITF predisposes to familial and sporadic melanoma, Nature, 2011, 480(7375), 99–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. M. H. Law, D. T. Bishop, J. E. Lee, M. Brossard, N. G. Martin, E. K. Moses, {etet al.}, Genome-wide metaanalysis identifies five new susceptibility loci for cutaneous malignant melanoma, Nat. Genet., 2015, 47(9), 987–995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. M. M. Iles, M. H. Law, S. N. Stacey, J. Han, S. Fang, R. Pfeiffer, {etet al.}, Avariant in FTO shows association with melanoma risk not due to BMI, Nat. Genet., 2013, 45(4), 428–432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. A. Visconti, D. L. Duffy, F. Liu, G. Zhu, W. Wu, Y. Chen, {etet al.}, Genome-wide association study in 176,678 Europeans reveals genetic loci for tanning response to sun exposure, Nat. Commun., 2018, 9(1), 1684.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Y. Lu, W. E. Ek, D. Whiteman, T. L. Vaughan, A. B. Spurdle, D. F. Easton, {etet al.}, Most common ‘sporadic’ cancers have a significant germline genetic component, Hum. Mol. Genet., 2014, 23(22), 6112–6118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. A. E. Cust, C. Goumas, K. Vuong, J. R. Davies, J. H. Barrett, E. A. Holland, {etet al.}, MC1R genotype as a predictor of early-onset melanoma, compared with selfreported and physician-measured traditional risk factors: an Australian case-control-family study, BMC Cancer, 2013, 13, 406.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. S. Fang, J. Han, M. Zhang, L. E. Wang, Q. Wei, C. I. Amos, {etet al.}, Joint effect of multiple common SNPs predicts melanoma susceptibility, PLoS One, 2013, 8(12), e85642.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. A. E. Cust, M. Drummond, P. A. Kanetsky, A. M. Goldstein, J. H. Barrett, S. MacGregor, {etet al.}, Assessing the incremental contribution of common genomic variants to melanoma risk prediction in two population-based studies, J. Invest. Dermatol., 2018, Epub ahead of print.

    Google Scholar 

  84. A. K. Smit, D. Espinoza, A. J. Newson, R. L. Morton, G. Fenton, L. Freeman, {etet al.}, A Pilot Randomized Controlled Trial of the Feasibility, Acceptability, and Impact of Giving Information on Personalized Genomic Risk of Melanoma to the Public, Cancer Epidemiol. Biomarkers Prev., 2017, 26(2), 212–221.

    Article  PubMed  Google Scholar 

  85. A. K. Smit, A. J. Newson, R. L. Morton, M. Kimlin, L. Keogh, M. H. Law, {etet al.}, The melanoma genomics managing your risk study: A protocol for a randomized controlled trial evaluating the impact of personal genomic risk information on skin cancer prevention behaviors, Contemp. Clin. Trials, 2018, 70, 106–116.

    Article  PubMed  Google Scholar 

  86. J. L. Hay, M. Berwick, K. Zielaskowski, K. A. White, V. M. Rodriguez, E. Robers, {etet al.}, Implementing an Internet-Delivered Skin Cancer Genetic Testing Intervention to Improve Sun Protection Behavior in a Diverse Population: Protocol for a Randomized Controlled Trial, JMIRRes. Protoc., 2017, 6(4), e52.

    Article  Google Scholar 

  87. P. A. Kanetsky and J. L. Hay, Marshaling the Translational Potential of, Cancer Prev. Res., 2018, 11(3), 121–124.

    Article  CAS  Google Scholar 

  88. N. Pashayan, Q. Guo and P. D. Pharoah, Personalized screening for cancers: should we consider polygenic profiling?, Pers. Med., 2013, 10(6), 511–513.

    Article  CAS  Google Scholar 

  89. P. M. Marcus, N. Pashayan, T. R. Church, V. P. Doria-Rose, M. K. Gould, R. A. Hubbard, {etet al.}, Population-Based Precision Cancer Screening: A Symposium on Evidence, Epidemiology, and Next Steps, Cancer Epidemiol. Biomarkers Prev., 2016, 25(11), 1449–1455.

  90. C. G. Watts, A. E. Cust, S. W. Menzies, G. J. Mann and R. L. Morton, Cost-Effectiveness of Skin Surveillance Through a Specialized Clinic for Patients at High Risk of Melanoma, J. Clin. Oncol., 2017, 35(1), 63–71.

    Article  PubMed  Google Scholar 

  91. T. Dent, J. Jbilou, I. Rafi, N. Segnan, S. Tornberg, S. Chowdhury, {etet al.}, Stratified cancer screening: the prac ticalities of implementation, Public Health Genomics, 2013, 16(3), 94–99.

    Article  CAS  PubMed  Google Scholar 

  92. V. Chaudru, A. Chompret, B. Bressac-de Paillerets, A. Spatz, M. F. Avril and F. Demenais, Influence of genes, nevi, and sun sensitivity on melanoma risk in a family sample unselected by family history and in melanomaprone families, J. Natl. Cancer Inst., 2004, 96(10), 785–795.

    Article  PubMed  Google Scholar 

  93. M. C. Fargnoli, S. Gandini, K. Peris, P. Maisonneuve and S. Raimondi, MC1R variants increase melanoma risk in families with CDKN2A mutations: a meta-analysis, Eur.J. Cancer, 2010, 46(8), 1413–1420.

    Article  CAS  PubMed  Google Scholar 

  94. A. M. Goldstein, M. T. Landi, S. Tsang, M. C. Fraser, D. J. Munroe and M. A. Tucker, Association of MC1R variants and risk of melanoma in melanoma-prone families with CDKN2A mutations, Cancer Epidemiol. Biomarkers Prev., 2005, 14(9), 2208–2212.

    Article  CAS  PubMed  Google Scholar 

  95. C. B. Begg, I. Orlow, A. J. Hummer, B. K. Armstrong, A. Kricker, L. D. Marrett, {etet al.}, Lifetime risk of melanoma in CDKN2A mutation carriers in a population-based sample, J. Natl. Cancer Inst., 2005, 97(20), 1507–1515.

    Article  CAS  PubMed  Google Scholar 

  96. I. Orlow, Y. Shi, P. A. Kanetsky, N. E. Thomas, L. Luo, S. Corrales-Guerrero, {etet al.}, The interaction between vitamin D receptor polymorphisms and sun exposure around time of diagnosis influences melanoma survival, Pigm. Cell Melanoma Res., 2018, 31(2), 287–296.

    Article  CAS  Google Scholar 

  97. A. Kricker, B. K. Armstrong, C. Goumas, P. Kanetsky, R. P. Gallagher, C. B. Begg, {etet al.}, MC1R genotype may modify the effect of sun exposure on melanoma risk in the GEM study, Cancer Causes Control, 2010, 21(12), 2137–2147.

    Article  PubMed  PubMed Central  Google Scholar 

  98. J. Reichrath and K. Rass, Ultraviolet damage, DNA repair and vitamin D in nonmelanoma skin cancer and in malignant melanoma: an update, Adv. Exp. Med. Biol., 2014, 810, 208–233.

    PubMed  Google Scholar 

  99. J. Han, G. A. Colditz, J. S. Liu and D. J. Hunter, Genetic variation in XPD, sun exposure, and risk of skin cancer, Cancer Epidemiol., Biomarkers Prev., 2005, 14(6), 1539–1544.

    Article  CAS  Google Scholar 

  100. S. M. Torres, L. Luo, J. Lilyquist, C. A. Stidley, K. Flores, K. A. White, {etet al.}, DNA repair variants, indoor tanning, and risk of melanoma, Pigm. Cell Melanoma Res., 2013, 26(5), 677–684.

    Article  CAS  Google Scholar 

  101. M. Berwick, J. MacArthur, I. Orlow, P. Kanetsky, C. B. Begg, L. Luo, {etet al.}, MITF E318K’s effect on melanoma risk independent of, but modified by, other risk factors, Pigm. Cell Melanoma Res., 2014, 27(3), 485–488.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianne Berwick.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cust, A.Ε., Mishra, K. & Berwick, M. Melanoma–role of the environment and genetics. Photochem Photobiol Sci 17, 1853–1860 (2018). https://doi.org/10.1039/c7pp00411g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c7pp00411g

Navigation