Skip to main content
Log in

Photo-Fries rearrangement of aryl acetamides: regioselectivity induced by the aqueous micellar green environment

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Photochemical reactions tend to give more than one photoproduct. However, such a reaction can be a powerful synthetic tool when it is possible to conduct it in regioselective conditions yielding a single photoproduct. Water–surfactant solutions as reaction media can be considered as an approach in this context because they show products with different features than those from isotropic solutions. Here we describe results obtained from studying the effect on the prototypical photoreaction, known as the photo-Fries reaction of several substituted acetanilides and α-naphthyl acetamide within surfactant micelles (ionic and non-ionic micelles). This reaction involves homolytic cleavage of a C–N bond to yield a singlet radical pair. The surfactant micelles control the rotational and translational mobility of the radical pair, resulting in noticeable photoproduct selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. M. A. Miranda and F. Galindo, in Photochemistry of Organic Molecules in isotropic and Anisotropic Media, ed. V. Ramamurthy and K. S. Schanze, Marcel Dekker, New York, 2003, ch. 2.

  2. A. Natarajan, L. S. Kaanumale and V. Ramamurthy, in CRC Handbook of Organic Photochemistry and Photobiology, ed. W. Horspool and F. Lenci, CRC Press, Boca Raton, FL, 2004, vol. 3, p. 107.

  3. J. H. Fendler and E. J. Fendler, in Catalysis in Micellar and Macromolecular System, Academic Press, London, 1975.

    Google Scholar 

  4. Mixed Surfactant System, ed. P. M. Holland and D. N. Rubingh, American Chemical Society, Washington, DC, 1994.

    Google Scholar 

  5. N. J. Turro, From Boiling Stones to Smart Crystals: Supramolecular and Magnetic Isotope Control of Radical−Radical Reactions in Zeolites, Acc. Chem. Res., 2000, 33, 637–646.

    Article  CAS  PubMed  Google Scholar 

  6. K. Bhattachrya, Solvation Dynamics and Proton Transfer in Supramolecular Assemblies, Acc. Chem. Res., 2003, 36, 95–101.

    Article  CAS  Google Scholar 

  7. C. H. Tung, L. Z. Wu, L. P. Zhang and B. Cheng, Supramolecular Systems as Microreactors: Control of Product Selectivity in Organic Phototransformation, Acc. Chem. Res., 2003, 36, 39–47.

    Article  CAS  PubMed  Google Scholar 

  8. R. S. H. Liu and G. S. Hammond, Reflection on Medium Effects on Photochemical Reactivity, Acc. Chem. Res., 2005, 38, 396–403.

    Article  CAS  PubMed  Google Scholar 

  9. W. Gu and R. G. Weiss, Extracting fundamental photochemical and photophysical information from photorearrangements of aryl phenylacylates and aryl benzyl ethers in media comprised of polyolefinic films, J. Photochem. Photobiol., C, 2001, 2, 117–137.

    Article  CAS  Google Scholar 

  10. V. Ramamurthy, Controlling photochemical reactions via confinement: zeolites, J. Photochem. Photobiol., C, 2000, 1, 145–166.

    Article  CAS  Google Scholar 

  11. L. S. Kaanumalle, J. Nithyanandhan, M. Pattabiaman, N. Jayaraman and V. Ramamurthy, Water-Soluble Dendrimers as Photochemical Reaction Media: Chemical Behavior of Singlet and Triplet Radical Pairs Inside Dendritic Reaction Cavities, J. Am. Chem. Soc., 2004, 126, 8999–9006.

    Article  CAS  PubMed  Google Scholar 

  12. S. Arumugan, D. R. Vutukuri, S. Thayumanavan and V. Ramamurthy, Amphiphilic Homopolymer as a Reaction Medium in Water: Product Selectivity within Polymeric Nanopockets, J. Am. Chem. Soc., 2005, 127, 13200–13206.

    Article  CAS  Google Scholar 

  13. M. Pattabiraman, L. S. Kaanumalle and V. Ramamurthy, Photoproduct Selectivity in Reactions Involving Singlet and Triplet Excited States within Bile Salt Micelles, Langmuir, 2006, 22, 2185–2192.

    Article  CAS  PubMed  Google Scholar 

  14. L. S. Kaanumalle, C. L. D. Gibb, B. C. Gibb and V. Ramamurthy, Photo-Fries reaction in water made selective with a capsule, Org. Biomol. Chem., 2007, 5, 236–238.

    Article  CAS  PubMed  Google Scholar 

  15. R. Kulasekharan, R. Choudhurry, R. Prabhakar and V. Ramamurthy, Restricted rotation due to the lack of free space within a capsule translates into product selectivity: photochemistry of cyclohexyl phenyl ketones within a water-soluble organic capsule, Chem. Commun., 2011, 47, 2841–2843.

    Article  CAS  Google Scholar 

  16. J. C. Anderson and C. B. Reese, Photoinduced Fries rearrangement, Proc. Chem. Soc., London, 1960, 217.

    Google Scholar 

  17. D. Bellus, Photo-Fries rearrangement and related photochemical [1,j]–shift (j: 3, 5, 7) of carbonyl and sulfonyl groups, Adv. Photochem., 1971, 8, 109–159.

    CAS  Google Scholar 

  18. M. A. Miranda, in CRC Handbook of Organic Photochemistry and Photobiology, ed. W. Horspool and P. S. Song, CRC Press, Boca Raton, FL, 1995, p. 570.

  19. J. W. Meyer and G. S. Hammond, Mechanism of photochemical reactions in solution. LXX. Photolysis of aryl esters, J. Am. Chem. Soc., 1972, 94, 2219–2228.

    Article  CAS  Google Scholar 

  20. C. E. Kalmus and D. S. Hercules, Thermal.pi.-route rearrangement of 4-cycloheptene-1-methyl acetate, J. Am. Chem. Soc., 1974, 96, 449–460.

    Article  CAS  Google Scholar 

  21. N. P. Gristan, Y. P. Tsentalovich, A. V. Yurkovskay and R. Z. Sagdeev, Laser Flash Photolysis and CIDNP Studies of 1-Naphthyl Acetate Photo-Fries Rearrangement, J. Phys. Chem., 1996, 100, 4448–4458.

    Article  Google Scholar 

  22. S. M. Bonesi, L. K. Crevatin, R. Erra Balsells, Photochemistry of 2-acyloxycarbazoles. A potential tool in the synthesis of carbazole alkaloids, Photochem. Photobiol. Sci., 2004, 3, 381.

    Article  CAS  PubMed  Google Scholar 

  23. L. C. Crevatin, S. M. Bonesi, R. Erra Balsells, Photo-Fries rearrangement of Carbazol-2-yl Sulfonates. Efficient tool for the introduction of sulfonyl groups into polycyclic aromatic compounds, Helv. Chim. Acta, 2006, 89, 1147.

    Article  CAS  Google Scholar 

  24. H. Shizuka and I. Tanaka, Photochemistry of Acetanilide. I. Quantum Yields of the Rearrangement and Benzene Photosensitized Reaction, Bull. Chem. Soc. Jpn., 1968, 41, 2343–2349.

    Article  CAS  Google Scholar 

  25. H. Shizuka, Photochemistry of Acetanilide. II. The Primary Processes in the Photochemical Reaction, Bull. Chem. Soc. Jpn., 1969, 42, 52–57.

    Article  CAS  Google Scholar 

  26. H. Shizuka, Photochemistry of Acetanilide. III. The Secondary Processes in the Photochemical Reaction, Bull. Chem. Soc. Jpn., 1969, 42, 57–65.

    Article  CAS  Google Scholar 

  27. H. Shizuka, M. Kato, T. Ochaiai, K. Matsui and T. Morita, The Photochemical Rearrangement of Phenyl Acetate, Bull. Chem. Soc. Jpn., 1969, 42, 1831–1836.

    Article  CAS  Google Scholar 

  28. H. Shizuka, M. Kato, T. Ochaiai, K. Matsui and I. Tanaka, The Photochemical Rearrangements of N-Acetyl Diphenylamine and N-Acetyl Carbazole, Bull. Chem. Soc. Jpn., 1970, 43, 67–74.

    Article  CAS  Google Scholar 

  29. S. M. Bonesi, R. Erra Balsells, Product Study of the photolysis of N-acetyl carbazole in ethanol and dichloromethane solution. Part I, J. Photochem. Photobiol., A, 1991, 56, 55.

    Article  CAS  Google Scholar 

  30. S. M. Bonesi, R. Erra Balsells, Photochemical behaviour of N-acetyl and N-benzoyl carbazole: photo-Fries rearrangenent and photoinduced single electron transfer, J. Photochem. Photobiol., A, 1997, 110, 271.

    Article  CAS  Google Scholar 

  31. F. M. Menger, The structure of micelles, Acc. Chem. Res., 1979, 12, 111–117.

    Article  CAS  Google Scholar 

  32. N. J. Turro and J. Mattay, Photochemistry of some deoxybenzoins in micellar solutions. Cage effects, isotope effects, and magnetic field effects, J. Am. Chem. Soc., 1981, 103, 4200–4204.

    Article  CAS  Google Scholar 

  33. N. J. Turro, G. Sidney Cox and M. A. Paczkowski, Photochemistry in Micelles, in Topics in Current Chemistry, Photochemistry and Organic Synthesis, ed. F. L. Boschke, Springer-Verlag, New York, 1985, vol. 129, p. 57.

    Chapter  Google Scholar 

  34. N. J. Turro and B. Kraeutler, Magnetic field and magnetic isotope effects in organic photochemical reactions. A novel probe of reaction mechanisms and a method for enrichment of magnetic isotopes, Acc. Chem. Res., 1980, 13, 369–377.

    Article  CAS  Google Scholar 

  35. N. J. Turro, A. L. Buchachenko and V. F. Tarasov, How Spin Stereochemistry Severely Complicates the Formation of a Carbon–Carbon Bond between Two Reactive Radicals in a Supercage, Acc. Chem. Res., 1995, 28, 69–80.

    Article  CAS  Google Scholar 

  36. K. Lalyanasundaran, in Photochemistry in Microheterogeneous Systems, Academic Press, Inc., Orlando, FL, 1987.

    Google Scholar 

  37. A. K. Singh and T. S. Raghuraman, Photorearrangement of phenyl cinnamates under micellar environment, Tetrahedron Lett., 1985, 26, 4125–4128.

    Article  CAS  Google Scholar 

  38. R. Nakagaki, M. Hiramatsu, T. Watanabe, Y. Tanimoto and S. Nagakura, Magnetic isotope and external magnetic field effects upon the photo-Fries rearrangement of 1-naphthyl acetate, J. Phys. Chem., 1985, 89, 3222–3226.

    Article  CAS  Google Scholar 

  39. R. Q. Yie, Y. C. Liu and X. G. Lei, The photo-fries rearrangement of α-naphthyl acetate in cyclodextrin and micelle, Res. Chem. Intermed., 1992, 18, 61–69.

    Article  Google Scholar 

  40. B. Suau, G. Torres and M. Valpuesta, The photo-fries rearrangement of 2,5-disubstituted phenyl acetates, Tetrahedron Lett., 1995, 36, 1311–1314.

    Article  CAS  Google Scholar 

  41. M. Nowakowska, J. Storsberg, S. Zapotoczny and J. E. Guillet, Studies of the antenna effect in polymer molecules. 28. Photo-Fries rearrangement of 1-naphthyl acetate in aqueous solutions of poly(sodium styrenesulfonate-co-2-vinylfluorene), New J. Chem., 1999, 23, 617–623.

    Article  CAS  Google Scholar 

  42. A. K. Singh and T. S. Raghuraman, Photobehaviour of N-Aryl Amides in Micelle, Synth. Commun., 1986, 16, 485–490.

    Article  CAS  Google Scholar 

  43. M. S. Syamala, B. Nageswer Rao and V. Ramamurthy, Modification of Photochemical Reactivity by Cyclodextrin complexation: Product Selectivity in Photo-Fries Rearrangement, Tetrahedron, 1988, 44, 7234–7242.

    Article  CAS  Google Scholar 

  44. M. Nasetta, R. H. De Rossi and J. J. Cosa, Influence of Cyclodextrins on the Photo-Fries rearrangement of acetanilide, Can. J. Chem., 1988, 66, 2794–2798.

    Article  Google Scholar 

  45. Ch. Felnon and H. Cynamon, Synthesis and Antibacterial Activities of Optically Active Ofloxacin, Antimicrob. Agents Chemother., 1986, 29, 163–164.

    Article  Google Scholar 

  46. K. Drlica and X. Zhao, DNA gyrase, topoisomerase IV, and the 4-quinolones, Microbiol. Mol. Biol. Rev., 1997, 61, 377–392.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. A. F. Pazkarshii, A. Soldatinkov and A. R. Katritzky, in Heterocyles in life and society, John Wiley and Sons, Chichester, 1997, pp. 147–148.

    Google Scholar 

  48. D. Edmont, R. Rocher, C. Plisson and J. Chenault, Synthesis and evaluation of quinoline carboxyguanidines as antidiabetic agents, Bioorg. Med. Chem. Lett., 2000, 10, 1831–1834.

    Article  CAS  PubMed  Google Scholar 

  49. Y. Xia, Z.-Y. Yang, P. Xia, K. F. Bastow, Y. Nakanishi, P. Nampoothiri, E. Hamel, A. Brossi, K.-H. Lee, Antitumor Agents. Part 226:y Synthesis and Cytotoxicity of 2-Phenyl-4-quinolone Acetic Acids and Their Esters, Bioorg. Med. Chem. Lett., 2003, 13, 2891–2893.

    Article  CAS  PubMed  Google Scholar 

  50. L. A. Mitscher, Bacterial Topoisomerase Inhibitors: Quinolone and Pyridone Antibacterial Agents, Chem. Rev., 2005, 105, 559–592.

    Article  CAS  PubMed  Google Scholar 

  51. S. Nakamura, M. Kozuka, K. F. Bastow, H. Tokuda, H. Nishino, M. Suzuki, J. Tatsuzaki, S. L. M. Natschke, S.-C. Kuo, K.-H. Lee, Cancer preventive agents, Part 2: Synthesis and evaluation of 2-phenyl-4-quinolone and 9-oxo-9,10-dihydroacridine derivatives as novel antitumor promoters, Bioorg. Med. Chem., 2005, 13, 4396–4401.

    Article  CAS  PubMed  Google Scholar 

  52. B. d’A. Lucero, C. R. B. Gomes, I. C. Frugulhetti, L. V. Faro, L. Alvarenza, M. C. B. V. Souza, T. M. L. de Souza and V. F. Ferreira, Synthesis and anti-HSV-1 activity of quinolonic acyclovir analogues, Bioorg. Med. Chem. Lett., 2006, 16, 1010–1013.

    Article  CAS  PubMed  Google Scholar 

  53. C. P. Jones, K. W. Anderson and S. L. Buchwald, Sequential Cu-Catalyzed Amidation-Base-Mediated Camps Cyclization: A Two-Step Synthesis of 2-Aryl-4-quinolones from o-Halophenones, J. Org. Chem., 2007, 72, 7968–7973.

    Article  CAS  PubMed  Google Scholar 

  54. J. Huang, Y. Chen, A. O. King, M. Dilmeghani, R. D. Larsen, M. M. Faul and A. Mild, One-Pot Synthesis of 4-Quinolones via Sequential Pd-Catalyzed Amidation and Base-Promoted Cyclization, Org. Lett., 2008, 10, 2609–2611.

    Article  CAS  PubMed  Google Scholar 

  55. T. Zhao and B. Xu, Palladium-Catalyzed Tandem Amination Reaction for the Synthesis of 4-Quinolones, Org. Lett., 2010, 12, 121–215.

    Google Scholar 

  56. L. Brinchi, P. di Profio, F. Micheli, R. Germani, G. Savelli and C. A. Bunton, Structure of Micellar head-Groups and the Hydrolysis of Phenyl Chlorofomate. The Role of Perchlorate Ion, Eur. J. Org. Chem., 2001, 1115.

    Google Scholar 

  57. L. Sepulveda, E. Lissi and F. H. Quina, Interactions of Neutral Molecules with Ionic Micelles, Adv. Colloid Interface Sci., 1986, 25, 1–57.

    Article  CAS  PubMed  Google Scholar 

  58. F. H. Quina and E. O. Alonso, Incorporation of Nonionic Solutes into Aqueous Micelles: A Linear Solvation Free Energy Relationship Analysis, J. Phys. Chem., 1995, 99, 11708–11714.

    Article  CAS  Google Scholar 

  59. H. Abraham, H. S. Chadha, J. P. Dixon, C. Rafols and C. Treiner, Hydrogen bonding Part 40. Factors that influence the distribution of solutes between water and sodium dodecylsulfate micelles, J. Chem. Soc., Perkin Trans. 2, 1995, 887–894.

    Google Scholar 

  60. H. Abraham, H. S. Chadha, J. P. Dixon, C. Rafols and C. Treiner, Hydrogen bonding. Part 41.1 Factors that influence the distribution of solutes between water and hexadecylpyridinium chloride micelles, J. Chem. Soc., Perkin Trans. 2, 1997, 19–24.

    Google Scholar 

  61. P. Campos Rey, C. Cabaleiro Lago, P. Hervés, Solvolysis of Substituted benzoyl Chlorides in Nonionic and Mixed Micllar Solutions, J. Phys. Chem. B, 2010, 114, 14004–14011.

    Article  CAS  PubMed  Google Scholar 

  62. D. J. Luning Prak, W. I. Jahraus, J. M. Sims, A. H. Roy McArthur, An 1H NMR investigation into the loci of solubilization of 4-nitrotoluene, 2,6-dinitrotoluene, and 2,4,6-trinitrotoluene in nonionic surfactant micelles, Colloids Surf., A, 2011, 375, 12–22.

    Article  CAS  Google Scholar 

  63. P. Sabatino, A. Szczygielb, D. Sinnaeveb, M. Hakimhashemia, H. Saveyna, J. C. Martinsb, P. Van der Meerena, NMR study of the influence of pH on phenol sorption in cationic CTAB micellar solutions, Colloids Surf., A, 2010, 370, 42–48.

    Article  CAS  Google Scholar 

  64. L. A. Bernardez, Investigation on the locus of solubilization of polycyclic aromatic hydrocarbons in non-ionic surfactant micelles with 1H NMR spectroscopy, Colloids Surf., A, 2008, 324, 71–78.

    Article  CAS  Google Scholar 

  65. M. E. N. P. Ribeiro, C. L. de Moura, M. G. S. Vieira, N. V. Gramosa, Ch. Chaubundit, M. C. de Mattos, D. Attwood, S. G. Yeats, S. K. Nixon, N. M. P. A. Ricardo, Solubilisation capacity of Brij surfactants, Int. J. Pharm., 2012, 436, 631–635.

    Article  CAS  PubMed  Google Scholar 

  66. N. Dharaiyaa, S. Chavdaa, K. Singhb, D. G. Marangonib and P. Bahadura, Spectral and hydrodynamic studies on p-toluidine induced growth in cationic micelle, Spectrochim. Acta, Part A, 2012, 93, 306–312.

    Article  CAS  Google Scholar 

  67. J. C. Eriksson, NMR-Experiments on Solubilization in Soap Micelles, Acta Chem. Scand., 1963, 17, 1478–1481.

    Article  CAS  Google Scholar 

  68. J. C. Eriksson and G. Gillberg, NMR-Studies of the Solubilisation of Aromatic Compounds in Cetyltrimethylammonium Bromide Solution. II., Acta Chem. Scand., 1966, 20, 2019–2027.

    Article  CAS  Google Scholar 

  69. J. E. Gordon, J. C. Robertson and R. L. Thorne, Medium effects on hydrogen-1 chemical shift of benzene in micellar and nonmicellar aqueous solutions of organic salts, J. Phys. Chem., 1970, 74, 957–961.

    Article  CAS  Google Scholar 

  70. F. Podo, A. Ray and G. Nemethy, Structure and hydration of nonionic detergent micelles. High resolution nuclear magnetic resonance study, J. Am. Chem. Soc., 1973, 95, 6164–6171.

    Article  CAS  Google Scholar 

  71. X. Gao and T. C. Wong, Studies of the binding and structure of adrenocorticotropin peptides in membrane mimics by NMR spectroscopy and pulsed-field gradient diffusion, Biophys. J., 1998, 74, 1871–1888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. X. Gao and T. C. Wong, NMR studies of adrenocorticotropin hormone peptides in sodium dodecylsulfate and dodecylphosphocholine micelles: Proline isomerism and interactions of the peptides with micelles, Biopolymers, 2001, 58, 20–32.

    Article  CAS  PubMed  Google Scholar 

  73. C. Chatterjee and C. Mukhopadhyay, Conformational alteration of bradykinin in presence of GM1 micelle, Biochem. Biophys. Res. Commun., 2004, 315, 866–871.

    Article  CAS  PubMed  Google Scholar 

  74. C. Chatterjee and C. Mukhopadhyay, Interaction and structural study of kinin peptide bradykinin and ganglioside monosialylated 1 micelle, Biopolymers, 2005, 78, 197–205.

    Article  CAS  PubMed  Google Scholar 

  75. N. Matsumori, T. Houdai and M. Murata, Conformation and Position of Membrane-Bound Amphotericin B Deduced from NMR in SDS Micelles, J. Org. Chem., 2007, 72, 700–707.

    Article  CAS  PubMed  Google Scholar 

  76. L. A. Bernardez and S. Ghoshal, Selective Solubilization of Polycyclic Aromatic Hydrocarbons from Multicomponent Nonaqueous-Phase Liquids into Nonionic Surfactant Micelles, Environ. Sci. Technol., 2004, 38, 5878–5887.

    Article  CAS  PubMed  Google Scholar 

  77. M. S. Goldenberg, L. A. Bruno and E. L. Rennwantz, Determination of Solubilization Sites and Efficiency of Water-Insoluble Agents in Ethylene Oxide-Containing Nonionic Micelles, J. Colloid Interface Sci., 1993, 158, 351–363.

    Article  CAS  Google Scholar 

  78. For examples, see: T. Mori, Y. Inoue, R. G. Weiss, Enhanced Photodecarboxylation of an Aryl Ester in Polyethylene Films, Org. Lett., 2003, 5, 4661–4664.

    Article  CAS  PubMed  Google Scholar 

  79. T. Hirano, W. Li, L. Abrams, P. J. Krusic, M. F. Ottaviani and N. J. Turro, Supramolecular Steric Effects as the Means of Making Reactive Carbon Radicals Persistent. Quantitative Characterization of the External Surface of MFI Zeolites through a Persistent Radical Probe and a Langmuir Adsorption Isotherm, J. Org. Chem., 2000, 65, 1319–1330.

    Article  CAS  PubMed  Google Scholar 

  80. C. Cui and R. G. Weiss, Photo-Fries rearrangements of 2-naphthyl acylates as probes of the size and shape of guest sites afforded by unstretched and stretched low-density polyethylene films. A case of remarkable selectivity, J. Am. Chem. Soc., 1993, 115, 9820–9821.

    Article  CAS  Google Scholar 

  81. S. M. Bonesi, M. Mesaros, F. M. Cabrerizo, M. A. Ponce, G. Bilmes, R. Erra-Balsells, The photophysiscs of nitrocarbazoles used as UV-MALDI matrices. Comparative spectroscopic and optoacoustic studies of mono- and dinitrocarbazoles, Chem. Phys. Lett., 2007, 446, 49.

    Article  CAS  Google Scholar 

  82. A. Cors, S. M. Bonesi, R. Erra-Balsells, Photoreduction of nitroarenes with formic acid in acetonitrile at room temperature, Tetrahedron Lett., 2008, 49, 1555.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio M. Bonesi.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c5pp00349k

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iguchi, D., Erra-Balsells, R. & Bonesi, S.M. Photo-Fries rearrangement of aryl acetamides: regioselectivity induced by the aqueous micellar green environment. Photochem Photobiol Sci 15, 105–116 (2016). https://doi.org/10.1039/c5pp00349k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c5pp00349k

Navigation