Skip to main content

Advertisement

Log in

Influence of external bacterial structures on the efficiency of photodynamic inactivation by a cationic porphyrin

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The main targets of photodynamic inactivation (PDI) are the external bacterial structures, cytoplasmic membrane and cell wall. In this work it was evaluated how the external bacterial structures influence the PDI efficiency. To reach this objective 8 bacteria with distinct external structures were selected; 4 Gram-negative bacteria (Escherichia coli, with typical Gram-negative external structures; Aeromonas salmonicida, Aeromonas hydrophila both with an S-layer and Rhodopirellula sp., with a peptidoglycan-less proteinaceous cell wall and with cytoplasm compartmentalization) and 4 Gram-positive bacteria (Staphylococcus aureus, with typical Gram-positive external structures; Truepera radiovictrix, Deinococcus geothermalis and Deinococcus radiodurans, all with thick cell walls that give them Gram-positive stains, but including a second complex multi-layered membrane and structurally analogous to that of Gram-negative bacteria). The studies were performed in the presence of 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin tetraiodide (Tetra-Py+-Me) at 5.0 μM with white light (40 W m−2). The susceptibility of each bacteria to PDI by Tetra-Py+-Me was dependent on bacteria external structures. Although all Gram-positive bacteria were inactivated to the detection limit (reduction of ∼8 log) after 60–180 min of irradiation, the inactivation followed distinct patterns. Among the Gram-negative bacteria, E. coli was the only species to be inactivated to the detection limit (∼8 log after 180 min). The efficiency of inactivation of the two species of Aeromonas was similar (reduction of ∼5–6 log after 270 min). Rhodopirellula was less susceptible (reduction of ∼4 log after 270 min). As previously observed, the Gram-positive bacteria are more easily inactivated than Gram-negative strains, and this is even true for T. radiovictrix, D. geothermalis and D. radiodurans, which have a complex multi-layered cell wall. The results support the theory that the outer cell structures are major bacterial targets for PDI. Moreover, the chemical composition of the external structures has a stronger effect on PDI efficiency than complexity and the number of layers of the external coating, and lipids seem to be an important target of PDI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and References

  1. S. Kosaka, O. Akilov, K. O’riordan, and T. Hasan, A mechanistic study of delta-aminolevulinic acid-based photodynamic therapy for cutaneous leishmaniasis, J. Invest. Dermatol., 2007, 127, 1546.

    Article  CAS  PubMed  Google Scholar 

  2. L. Costa, E. Alves, C. M. B. Carvalho, J. P. C. Tomé, M. A. F. Faustino, M. G. P. M. F. Neves, A. C. Tomé, J. A. S. Cavaleiro, Â. Cunha, and A. Almeida, Sewage bacteriophage photoinactivation by cationic porphyrins: a study of charge effect, Photochem. Photobiol. Sci., 2008, 7, 415–422.

    Article  CAS  PubMed  Google Scholar 

  3. E. Alves, L. Costa, C. Carvalho, J. P. C. Tomé, M. A. F. Faustino, M. G. P. M. S. Neves, A. C. Tomé, J. A. S. Cavaleiro, A. Cunha, and A. Almeida, Charge effect on the photoinactivation of Gram-negative and Gram-positive bacteria by cationic meso-substituted porphyrins, BMC Microbiol., 2009, 9, 70–83.

    Article  PubMed  PubMed Central  Google Scholar 

  4. A. Almeida, Â. Cunha, M. A. F. Faustino, A. C. Tomé, and M. G. P. M. S. Neves, Porphyrins as antimicrobial photosensitizing agents, in Photodynamic Inactivation of Microbial Pathogens: Medical and Environmental Applications, ed. M. R. Hamblin and G. Jori, Royal Society of Chemistry, Cambridge, 2011, pp. 83–160, ISBN: 978-1-84973-144-7. ISSN: 2041-9716.

    Chapter  Google Scholar 

  5. A. N. Vzorov, D. W. Dixon, J. S. Trommel, L. G. Marzilli, and R. W. Compans, Inactivation of human immunodeficiency virus type 1 by porphyrins, Antimicrob. Agents Chemother., 2002, 46, 3917–3925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. A. Egyeki, G. Turoczy, Z. Majer, K. Toth, A. Fekete, P. Maillard, and G. Csik, Photosensitized inactivation of T7 phage as surrogate of non-enveloped DNA viruses: efficiency and mechanism of action, Biochim. Biophys. Acta, 2003, 1624, 115–124.

    Article  CAS  PubMed  Google Scholar 

  7. M. R. Hamblin, and T. Hasan, Photodynamic therapy: a new antimicrobial approach to infectious disease?, Photochem. Photobiol. Sci., 2004, 3, 436–450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. G. Valduga, B. Breda, G. M. Giacometti, G. Jori, and E. Reddi, Photosensitization of wild and mutant strains of Escherichia coli by meso-tetra(N-methyl-4-pyridyl)porphine, Biochem. Biophys. Res. Commun., 1999, 256, 84–88.

    Article  CAS  PubMed  Google Scholar 

  9. E. N. Durantini, Photodynamic inactivation of bacteria, Curr. Bioact. Compd., 2006, 2, 127–142.

    Article  CAS  Google Scholar 

  10. E. Alves, M. A. Faustino, J. P. Tomé, M. G. P. M. S. Neves, A. C. Tomé, J. A. S. Cavaleiro, Â. Cunha, N. C. M. Gomes, and A. Almeida, Nucleic acid changes during photodynamic inactivation of bacteria by cationic porphyrins, Bioorg. Med. Chem., 2013, 21, 4311–4318.

    Article  CAS  PubMed  Google Scholar 

  11. H. D. Li, O. S. Fedorova, A. N. Grachev, W. R. Trumble, G. A. Bohach, and L. Czuchajowski, A series of meso-tris(N-methyl-pyridiniumyl)-(4-alkylamidophenyl)porphyrins: Synthesis, interaction with DNA and antibacterial activity, Biochim. Biophys. Acta, 1997, 1354, 252–260.

    Article  CAS  PubMed  Google Scholar 

  12. S. Mettath, B. R. Munson, and R. K. Pandey, DNA interaction and photocleavage properties of porphyrins containing cationic substituents at the peripheral position, Bioconjugate Chem., 1999, 10(1), 94–102.

    Article  CAS  Google Scholar 

  13. K. D. Winckler, Special section: Focus on anti-microbial photodynamic therapy (PDT), J. Photochem. Photobiol., B, 2007, 86, 43–44.

    Article  CAS  Google Scholar 

  14. F. M. Lauro, P. Pretto, L. Covolo, G. Jori, and G. Bertoloni, Photoinactivation of bacterial strains involved in periodontal diseases sensitized by porphycene-polylysine conjugates, Photochem. Photobiol. Sci., 2002, 1, 468–470.

    Article  CAS  PubMed  Google Scholar 

  15. A. Tavares, C. M. B. Carvalho, M. A. Faustino, M. G. P. M. S. Neves, J. P. C. Tomé, A. C. Tomé, J. A. S. Cavaleiro, Â. Cunha, N. C. M. Gomes, E. Alves, and A. Almeida, Antimicrobial photodynamic therapy: study of bacterial recovery viability and potential development of resistance after treatment, Mar. Drugs, 2010, 8, 91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. L. Costa, C. M. B. Carvalho, J. P. C. Tomé, M. A. F. Faustino, M. G. P. M. S. Neves, A. C. Tomé, J. A. S. Cavaleiro, Â. Cunha, N. C. M. Gomes, and A. Almeida, Study of viral resistance following repeated exposure to aPDT and of viability recovery, Antiviral Res., 2011, 91, 278–282.

    Article  CAS  PubMed  Google Scholar 

  17. R. Bonnett, D. Buckley, T. Burrow, A. Galia, B. Saville, and S. Songca, Photobactericidal materials based on porphyrins and phthalocyanines, J. Mater. Chem., 1993, 3, 323–324.

    Article  CAS  Google Scholar 

  18. M. R. Hamblin, D. A. O’Donnell, N. Murthy, K. Rajagopalan, N. Michaud, M. E. Sherwood, and T. Hasan, Polycationic photosensitizer conjugates: effects of chain length and Gram classification on the photodynamic inactivation of bacteria, J. Antimicrob. Chemother., 2002, 49(6), 941–951.

    Article  CAS  PubMed  Google Scholar 

  19. Z. Malik, H. Ladan, and Y. Nitzan, Photodynamic inactivation of Gram-negative bacteria: Problems and possible solutions, J. Photochem. Photobiol., B, 1992, 14(3), 262–266.

    Article  CAS  Google Scholar 

  20. B. Ehrenberg, Z. Malik, Y. Nitzan, H. Ladan, F. Johnson, G. Hemmi, and J. Sessler, The binding and photosensitization effects of tetrabenzoporphyrins and texaphyrin in bacterial cells, Lasers Med. Sci., 1993, 8(3), 197–203.

    Article  Google Scholar 

  21. G. Jori, and S. B. Brown, Photosensitized inactivation of microorganisms, Photochem. Photobiol. Sci., 2004, 3(5), 403–405.

    Article  CAS  PubMed  Google Scholar 

  22. A. Preuss, L. Zeugner, S. Hackbarth, M. A. F. Faustino, M. G. P. M. S. Neves, J. A. S. Cavaleiro, and B. Roeder, Photoinactivation of Escherichia coli (SURE2) without intracellular uptake of the photosensitizer, J. Appl. Microbiol., 2013, 114, 36.

    Article  CAS  PubMed  Google Scholar 

  23. M. Merchat, G. Bertolini, P. Giacomini, A. Villanueva, and G. Jori, Meso-substituted cationic porphyrins as efficient photosensitizers of gram-positive and gram-negative bacteria, J. Photochem. Photobiol., B, 1996, 32(3), 153–157.

    Article  CAS  Google Scholar 

  24. M. Merchat, J. D. Spikes, G. Bertoloni, and G. Jori, Studies on the mechanism of bacteria photosensitization by meso-substituted cationic porphyrins, J. Photochem. Photobiol., B, 1996, 35(3), 149–157.

    Article  CAS  Google Scholar 

  25. M. Jemli, Z. Alouini, S. Sabbahi, and M. Gueddari, Destruction of fecal bacteria in wastewater by three photosensitizers, J. Environ. Monit., 2002, 4(4), 511–516.

    Article  CAS  PubMed  Google Scholar 

  26. S. Banfi, E. Caruso, L. Buccafurni, V. Battini, S. Zazzaron, P. Barbieri, and V. Orlandi, Antibacterial activity of tetraaryl-porphyrin photosensitizers: an in vitro study on Gram negative and Gram positive bacteria, J. Photochem. Photobiol., B, 2006, 85(1), 28–38.

    Article  CAS  Google Scholar 

  27. C. Friedrich, D. Moyles, T. Beveridge, and R. Hancock, Antibacterial action of structurally diverse cationic peptides on Gram-positive bacteria, Antimicrob. Agents Chemother., 2000, 44(8), 2086–2092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. G. Jori, C. Fabris, M. Soncin, S. Ferro, O. Coppellotti, D. Dei, L. Fantetti, G. Chiti, and G. Roncucci, Photodynamic therapy in the treatment of microbial infections: basic principles and perspective applications, Lasers Surg. Med., 2006, 38(5), 468–481.

    Article  PubMed  Google Scholar 

  29. T. Maisch, R. M. Szeimies, G. Jori, and C. Abels, Antibacterial photodynamic therapy in dermatology, Photochem. Photobiol. Sci., 2004 3, 907–917.

    Article  CAS  PubMed  Google Scholar 

  30. H. Nikaido, Prevention of drug access to bacterial targets: permeability barriers and active efflux, Science, 1994, 264, 382–388.

    Article  CAS  PubMed  Google Scholar 

  31. R. Shawar, and B. H. Cooper, Comparative kinetics of hematoporphyrin derivative uptake and susceptibility of Bacillus subtilis and Streptococcus faecalis to photo-dynamic-action, Photochem. Photobiol., 1990, 52(4), 825–830.

    Article  CAS  PubMed  Google Scholar 

  32. K. Konig, M. Teschke, B. Sigusch, E. Glockmann, S. Eick, and W. Pfister, Red light kills bacteria via photodynamic action, Cell Mol. Biol., 2000, 46, 1297–1303.

    CAS  PubMed  Google Scholar 

  33. M. Grinholc, B. Szramka, J. Kurlenda, A. Graczyk, and K. P. Bielawski, Bacter-icidal effect of photodynamic inactivation against methicillin-resistant and methi-cillin-susceptible Staphylococcus aureus is strain-dependent, J. Photochem. Photobiol., B, 2008, 90, 57–135.

    Article  CAS  Google Scholar 

  34. Y. Nitzan, M. Gutterman, Z. Malik, and B. Ehrenberg, Inactivation of Gram-negative bacteria by photosensitized porphyrins, Photochem. Photobiol., 1992, 55(1), 89–96.

    Article  CAS  PubMed  Google Scholar 

  35. Y. Nitzan, H. M. Wexler, and S. M. Finegold, Inactivation of anaerobic-bacteria by various photosensitized porphyrins or by hemin, Curr. Microbiol., 1994, 29, 125–131.

    Article  CAS  PubMed  Google Scholar 

  36. M. Szpakowska, J. Reiss, A. Graczyk, S. Szmigielski, K. Lasocki, J. Grzy-bowski, Susceptibility of Pseudomonas aeruginosa to a photodynamic effect of the arginine hematoporphyrin derivative, Int. J. Antimicrob. Agents, 1997, 8, 23–27.

    Article  CAS  PubMed  Google Scholar 

  37. C. Arrojado, C. Pereira, J. P. C. Tomé, M. A. F. Faustino, M. G. P. M. S. Neves, A. C. Tomé, J. A. S. Cavaleiro, Â. Cunha, R. Calado, N. C. M. Gomes, and A. Almeida, Applicability of photodynamic antimicrobial chemotherapy as an alternative to inactivate fish pathogenic bacteria in aquaculture systems, Photochem. Photobiol. Sci., 2011, 10, 1691–1700.

    Article  CAS  PubMed  Google Scholar 

  38. I. C. Sutcliffe, A phylum level perspective on bacterial cell envelope architecture, Trends Microbiol., 2010, 18(10), 464–470.

    Article  CAS  PubMed  Google Scholar 

  39. H. Marchandin, C. Teyssier, J. Campos, H. Jean-Pierre, F. Roger, B. Gay, J. P. Carlier, E. Jumas-Bilak, Negativicoccus succinicivorans gen. Nov., sp. Nov., isolated from human clinical samples, emended description of the family Veillonellaceae and description of Negativicutes classis nov., Selenomonadales ord. Nov. and Acidaminococcaceae fam. Nov. in the bacterial phylum Firmicutes, Int. J. Syst. Evol. Microbiol., 2009, 60(6), 1271–1279.

    Article  PubMed  CAS  Google Scholar 

  40. R. S. Gupta, Origin of diderm (Gram-negative) bacteria: antibiotic selection pressure rather than endosymbiosis likely led to the evolution of bacterial cells with two membranes, Antonie van Leeuwenhoek, 2011, 100, 171–182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. C. Carvalho, A. Gomes, S. Fernandes, A. Prata, M. A. Almeida, M.Â. Cunha, J. Tomé, M. A. Faustino, M. G. Neves, A. Tomé, J. A. Cavaleiro, Z. Lin, J. Rainho, and J. Rocha, Photoinactivation and rapid monitorization of Sewage Bacterial Assemblages in Wastewater by Neutral and Cationic Porphyrins, J. Photochem. Photobiol., B, 2007, 88, 112–118.

    Article  CAS  Google Scholar 

  42. E. Alves, C. M. B. Carvalho, J. P. C. Tomé, M. A. F. Faustino, M. G. P. M. S. Neves, A. C. Tomé, J. A. S. Cavaleiro, Â. Cunha, S. Mendo, and A. Almeida, Photodynamic inactivation of recombinant bioluminescent Escherichia coli by cationic porphyrins under artificial and solar irradiation, J. Ind. Microbiol. Biotechnol., 2008, 35(11), 1447–1454.

    Article  CAS  PubMed  Google Scholar 

  43. A. Oliveira, A. Almeida, C. M. B. Carvalho, J. P. C. Tomé, M. A. F. Faustino, M. G. P. M. S. Neves, A. C. Tomé, J. A. S. Cavaleiro, Â. Cunha, Porphyrin derivatives as photosensitizers for the inactivation of Bacillus cereus endospores, J. Appl. Microbiol., 2009, 106(6), 1986–1995.

    Article  CAS  PubMed  Google Scholar 

  44. A. Tavares, S. R. S. Dias, C. M. B. Carvalho, M. A. F. Faustino, J. P. C. Tomé, M. G. P. M. S. Neves, A. C. Tomé, J. A. S. Cavaleiro, Â. Cunha, N. C. M. Gomes, E. Alves, and A. Almeida, Mechanisms of photodynamic inactivation of a Gram-negative recombinant bioluminescent bacterium by cationic porphyrins, Photochem. Photobiol. Sci., 2011, 10(10), 1659–1669.

    Article  CAS  PubMed  Google Scholar 

  45. L. Costa, J. P. C. Tomé, M. G. P. M. S. Neves, A. C. Tomé, J. A. S. Cavaleiro, Â. Cunha, M. A. F. Faustino, and A. Almeida, Susceptibility of non-enveloped DNA- and RNA-type viruses to photodynamic inactivation, Photochem. Photobiol. Sci., 2012, 11(10), 1520–1523.

    Article  CAS  PubMed  Google Scholar 

  46. E. König, H. Schlesner, and P. Hirsch, Cell wall studies on budding bacteria of the Planctomyces/Pasteuria group and on a Prosthecomicrobium sp., Arch. Microbiol., 1984, 138, 200–205.

    Article  Google Scholar 

  47. W. Liesack, H. König, H. Schlesner, and P. Hirsch, Chemical composition of the peptidoglycan-free cell envelopes of budding bacteria of the Pirella/Planctomyces group, J. Arch. Microbiol., 1986, 145(4), 361–366.

    Article  CAS  Google Scholar 

  48. S. J. Giovannoni, W. Godchaux III, E. Schabtach, and R. W. Castenholz, Cell wall and lipid composition of Isosphaera pallida, a budding eubacterium from hot springs, J. Bacteriol., 1987, 169, 2702–2707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. M. R. Lindsay, R. I. Webb, and J. A. Fuerst, Pirellulosomes: a new type of membrane-bounded cell compartment in planctomycete bacteria of the genus Pirellula, Microbiology, 1997, 143, 739–748.

    Article  CAS  PubMed  Google Scholar 

  50. M. R. Lindsay, R. I. Webb, M. Strous, M. S. Jetten, M. K. Butler, R. J. Forde, and J. A. Fuerst, Cell compartmentalization in planctomycetes: novel types of structural organization for the bacterial cell, Arch. Microbiol., 2001, 175, 413–429.

    Article  CAS  PubMed  Google Scholar 

  51. P. Lancy Jr., and R. G. Murray, The envelope of Micrococcus radiodurans: isolation, purification, and preliminary analysis of the wall layers, Can. J. Microbiol., 1978, 24, 162–176.

    Article  CAS  PubMed  Google Scholar 

  52. E. Work, and H. Griffiths, Morphology and chemistry of cell walls of Micrococcus radiodurans, J. Bacteriol., 1968, 95, 641–657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. M. Kolari, U. Schmidt, E. Kuismanen, M. S. Salkinoja-Salonen, Firm but Slippery Attachment of Deinococcus geothermalis, J. Bacteriol., 2002, 184(9), 2473–2480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. L. Albuquerque, C. Simões, M. F. Nobre, N. M. Pino, J. R. Battista, M. T. Silva, F. A. Rainey, M. S. Da Costa, Truepera radiovictrix gen. nov., sp. nov., a new radiation resistant species and the proposal of Trueperaceae fam. nov. FEMS, Microbiol. Lett., 2005, 247, 161–169.

    Article  CAS  Google Scholar 

  55. C. M. B. Carvalho, E. Alves, L. Costa, J. P. C. Tomé, M. A. F. Faustino, M. G. P. M. S. Neves, A. C. Tomé, J. A. S. Cavaleiro, A. Almeida, Â. Cunha, Z. Lin, and J. Rocha, Functional cationic nanomagnet-porphyrin hybrids for the photoinactivation of microorganisms, ACS Nano, 2010, 4, 7133–7140.

    Article  CAS  PubMed  Google Scholar 

  56. C. Pereira, Y. J. Silva, A. L. Santos, Â. Cunha, N. C. M. Gomes, and A. Almeida, Bacteriophages with potential for inactivation of fish pathogenic bacteria: survival, host specificity and effect on bacterial community structure, Mar. Drugs, 2011, 9(11), 2236–2255.

    Article  PubMed  PubMed Central  Google Scholar 

  57. A. Vieira, Y. J. Silva, Â. Cunha, N. C. M. Gomes, H. W. Ackermann, and A. Almeida, Phage therapy to control multidrug-resistant Pseudomonas aeruginosa skin infections: in vitro and ex vivo experiments, Eur. J. Clin. Microbiol. Infect. Dis., 2012, 31, 3241–3249.

    Article  CAS  PubMed  Google Scholar 

  58. O. M. Lage, J. Bondoso, and F. Viana, Isolation and characterisation of Planctomycetes from the sediments of a fish farm wastewater treatment tank, Arch. Microbiol., 2012, 194, 879–885.

    Article  CAS  PubMed  Google Scholar 

  59. C. V. Romão, E. P. Mitchell, and S. McSweeney, The crystal structure of Deinococcus radiodurans Dps protein (DR2263) reveals the presence of a novel metal centre in the N-terminus, J. Biol. Inorg. Chem., 2006, 11, 891–902.

    Article  PubMed  CAS  Google Scholar 

  60. A. C. Ferreira, M. F. Nobre, F. A. Rainey, M. T. Silva, R. Wait, J. Burghardt, A. P. Chung, M. S. da Costa, Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two extremely radiation-resistant and slightly thermophilic species from hot springs, Int. J. Syst. Bacteriol., 1997, 47(4), 939–947.

    Article  CAS  PubMed  Google Scholar 

  61. T. N. Demidova, and M. R. Hamblin, Photodynamic inactivation of Bacillus spores, mediated by phenothiazinium dyes, Appl. Environ. Microbiol., 2005, 71(11), 6918–6925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. H. Suzuki, T. Lefébure, P. P. Bitar, and M. J. Stanhope, Comparative genomic analysis of the genus Staphylococcus including Staphylococcus aureus and its newly described sister species Staphylococcus simiae, BMC Genomics, 2012, 13(38), 1–8.

    Google Scholar 

  63. M. Strakhovskaya, Y. N. Antonenko, A. Pashkovskaya, E. A. Kotova, V. Kireev, V. G. Zhukhovitsky, N. A. Kuznetsova, O. A. Yuzhakova, V. M. Negrimovsky, and A. B. Rubin, Electrostatic binding of substituted metal phthalocyanines to enterobacterial cells: its role in photodynamic inactivation, Biochemistry, 2009, 74(12), 1305–1314.

    CAS  PubMed  Google Scholar 

  64. K. Komagoe, H. Kato, T. Inoue, and T. Katsu, Continuous real-time monitoring of cationic porphyrin-induced photodynamic inactivation of bacterial membrane functions using electrochemical sensors, Photochem. Photobiol. Sci., 2011, 10(7), 1181–1188.

    Article  CAS  PubMed  Google Scholar 

  65. H. Kato, K. Komagoe, Y. Nakanishi, T. Inoue, and T. Katsu, Xanthene dyes induce membrane permeabilization of bacteria and erythrocytes by photoinactivation, Photochem. Photobiol., 2012, 88(2), 423–431.

    Article  CAS  PubMed  Google Scholar 

  66. M. N. Usacheva, M. C. Teichert, Y. Usachev, C. Sievert, and M. Biel, Interaction of the photobactericides methylene blue and toluidine blue with a fluorophore in Pseudomonas aeruginosa cells, Lasers Surg. Med., 2008, 40(1), 55–61.

    Article  CAS  PubMed  Google Scholar 

  67. M. C. Gomes, S. Silva, M. A. Faustino, M. G. P. M. S. Neves, A. Almeida, J. A. S. Cavaleiro, J. P. Tomé, Â. Cunha, Cationic galactoporphyrin photosensitisers against UV-B resistant bacteria: oxidation of lipids and proteins by 1O2, Photochem. Photobiol. Sci., 2013, 12(2), 262–271.

    Article  CAS  PubMed  Google Scholar 

  68. T. Lombardot, M. Bauer, H. Teeling, R. Amann, F. O. Glöckner, The transcriptional regulator pool of the marine bacterium Rhodopirellula baltica SH 1 T as revealed by whole genome comparisons, FEMS Microbiol. Lett., 2005, 242(1), 137–145.

    Article  CAS  PubMed  Google Scholar 

  69. R. A. Garduño, and W. W. Kay, Capsulated cells of Aeromonas salmonicida grown in vitro have different functional properties than capsulated cells grown in vivo, Can. J. Microbiol., 1995, 41, 941–945.

    Article  PubMed  Google Scholar 

  70. R. A. Garduño, M. A. Kuzyk, and W. W. Kay, Structural and physiological determinants of resistance of Aeromonas salmonicida to reactive radicals, Can. J. Microbiol., 1997, 43, 1044–1053.

    Article  Google Scholar 

  71. J. M. Karczewski, G. J. E. Sharp, and C. J. Secombes, Susceptibility of strains of Aeromonas salmonicida to killing by cellfree generated superoxide anion, J. Fish Dis., 1991, 14, 367–373.

    Article  CAS  Google Scholar 

  72. W. W. Kay, B. M. Phipps, E. E. Ishiguro, and T. J. Trust, Porphyrin binding by the surface array virulence protein of Aeromonas salmonicida, J. Bacteriol., 1985, 164, 1332–1336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. J. S. Dooley, W. D. McCubbin, C. M. Kay, and T. J. Trust, Isolation and Biochemical Characterization of the S-Layer Protein from a Pathogenic Aeromonas hydrophila Strain, J. Bacteriol., 1988, 170(6), 2631–2638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. R. Anderson, and K. Hansen, Structure of a novel phosphoglycolipid from Deinococcus radiodurans, J. Biol. Chem., 1985, 260, 12219–12223.

    Article  CAS  PubMed  Google Scholar 

  75. M. J. Thornley, R. W. Horne, and A. M. Glauert, The fine structure of Micrococcus radiodurans, Arch. Microbiol., 1965, 51, 267–289.

    CAS  Google Scholar 

  76. E. Griffiths, and R. S. Gupta, Identification of signature proteins that are distinctive of the Deinococcus-Thermus phylum, Int. Microbiol., 2007, 10, 201–208.

    CAS  PubMed  Google Scholar 

  77. V. A. Knivett, J. Cullen, and M. J. Jackson, Odd-numbered fatty acids in Micrococcus radiodurans, Biochem. J., 1965, 96, 2C–3C.

    Article  CAS  PubMed  Google Scholar 

  78. A. W. Girotti, Photosensitized oxidation of membrane lipids: reaction pathways, cytotoxic effects, and cytoprotective mechanisms, J. Photochem. Photobiol., B, 2001, 63, 103–113.

    Article  CAS  Google Scholar 

  79. G. Stark, Functional consequences of oxidative membrane damage, J. Membr. Biol., 2005, 205, 1–16.

    Article  CAS  PubMed  Google Scholar 

  80. E. Alves, T. Melo, C. Simões, M. A. F. Faustino, J. P. C. Tomé, M. G. P. S. Neves, J. A. S. Cavaleiro, Â. Cunha, G. Newton, P. Domingues, M. R. M. Domingues, and A. Almeida, Photodynamic oxidation of Staphylococcus warneri membrane phospholipids: new insights based on lipidomics, Rapid Commun. Mass Spectrom., 2013, 27, 1–12.

    Article  CAS  Google Scholar 

  81. E. Alves, N. Santos, T. Melo, E. Maciel, L. Dória, M. A. F. Faustino, J. P. C. Tomé, M. G. P. M. S. Neves, J. A. S. Cavaleiro, Â. Cunha, L. Helguero, P. Domingues, A. Almeida, M. R. M. Domingues, Photodynamic oxidation of Escherichia coli membrane phospholipids: new insights based on lipidomics, Rapid Commun. Mass Spectrom., 2013, 21, 4311–4318.

    CAS  Google Scholar 

  82. T. Melo, N. Santos, D. Lopes, E. Alves, E. Maciel, M. A. F. Faustino, J. P. C. Tomé, M. G. P. M. S. Neves, A. Almeida, P. Domingues, M. A. Segundo, M. R. M. Domingues, Photosensitized oxidation of phosphatidylethanolamines monitored by electrospray tandem mass spectrometry, J. Mass Spectrom., 2013, 48(12), 1357–1365.

    Article  CAS  PubMed  Google Scholar 

  83. J. A. Imlay, Pathways of oxidative damage, Annu. Rev. Microbiol., 2003, 57, 395–418.

    Article  CAS  PubMed  Google Scholar 

  84. M. N. Usacheva, M. C. Teichert, C. E. Sievert, and M. A. Biel, Effect of Ca+ on the photobactericidal efficacy of methylene blue and toluidine blue against gram-negative bacteria and the dye affinity for lipopolysaccharides, Lasers Med. Sci., 2006, 38(10), 946–954.

    Article  Google Scholar 

  85. E. Cabiscol, J. Tamarit, and J. Ros, Oxidative stress in bacteria and protein damage by reactive oxygen species, Int. Microbiol, 2000, 3, 3–8.

    CAS  PubMed  Google Scholar 

  86. P. Wecker, C. Klockow, A. Ellrott, C. Quast, P. Langhamme, J. Harder, F. O. Glöckner, Transcriptional response of the model planctomycete Rhodopirellula baltica SH1 T to changing environmental conditions, BMC Genomics, 2009, 10, 410–426.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. F. Käsermann, and C. Kempf, Photodynamic inactivation of enveloped viruses by buckminsterfullerene, Antiviral Res., 1997, 34, 65–70.

    Article  PubMed  Google Scholar 

  88. K. Müller-Breitkreutz, H. Mohr, K. Briviba, and H. Sies, Inactivation of viruses by chemically and photochemically generated singlet molecular oxygen, J. Photochem. Photobiol., B, 1995, 30, 63–70.

    Article  Google Scholar 

  89. J. A. Virtanen, K. H. Cheng, and P. Somerharju, Phospholipid composition of the mammalian red cell membrane can be rationalized by a superlattice model, Proc. Natl. Acad. Sci. U. S. A., 1998, 95, 4964–4969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. A. Hawrani, R. A. Howe, T. R. Walsh, and C. E. Dempsey, Origin of low mammalian cell toxicity in a class of highly active antimicrobial amphipathic helical peptides, J. Biol. Chem., 2008, 283, 18636–18645.

    Article  CAS  PubMed  Google Scholar 

  91. J. E. Cronan, Bacterial membrane lipids: where do we stand?, Annu. Rev. Microbiol., 2003, 57, 203–224.

    Article  CAS  PubMed  Google Scholar 

  92. N. N. Mishra, G. Y. Liu, M. R. Yeaman, C. C. Nast, R. A. Proctor, J. McKinnell, and A. S. Bayer, Carotenoid-related alteration of cell membrane fluidity impacts Staphylococcus aureus susceptibility to host defense peptides, Antimicrob. Agents Chemother., 2011, 55, 526–531.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Almeida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira, M.A., Faustino, M.A.F., Tomé, J.P.C. et al. Influence of external bacterial structures on the efficiency of photodynamic inactivation by a cationic porphyrin. Photochem Photobiol Sci 13, 680–690 (2014). https://doi.org/10.1039/c3pp50408e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c3pp50408e

Navigation